
C212 Final Exam (150 points)
December 16, 2024

PLEASE READ ALL DIRECTIONS BEFORE STARTING YOUR EXAM. DO NOT
OPEN UNTIL YOU ARE TOLD TO DO SO.

This is a closed-note exam aside from your one page of notes, double-sided. You may not use
any electronic devices to complete this exam, nor can you communicate with anyone besides the
proctors and professor. If you are caught cheating, you will receive an F in the course.

For any question, unless specified otherwise, you may use any class without a corresponding import.
E.g., if you want to use HashMap, you do not need to also import java.util.HashMap.

Unless otherwise stated, you do not need to spell out the “full design recipe”, i.e., write the
signature, documentation comments, and tests. Of course, doing so may aid you in your solution.

If you find a mistake, please raise your hand and let one of the proctors know; we will determine
whether or not this is the case.

The exam has 150 total points, with 25 extra credit points for a total possible score of 175/150.

If you need to use the restroom, raise your hand and let a proctor know. You must turn in your
exam, cheat sheet, and phone before leaving. You will receive these back upon your return.

When you are finished, check over your work carefully, turn in your exam and notes sheet if you
have one, then quietly exit.

You have 120 minutes to complete the exam.

Good luck!

Question Points Score

1 70

2 30

3 50

4 0

Total: 150

Name:

IU Email:

Part I

Recommended Time: 60 minutes

1 Problem

C212 Final Exam Page 3 of 20

1. (70 points) A quadtree is a recursive data structure used to compress data efficiently. Consider an image
where each pixel is represented by a color value. For instance, storing individual pixels of the IU logo
that is 256× 256 requires 262,144 bytes (or 262K). While this may seem negligible with today’s storage
capacities, scaling the image to 2048 × 2048 increases the required space to 16MB, which can become
costly when we need to store a lot of images of this size. Quadtrees help in compressing these images by
consolidating large regions of the same color.

(a) IU Logo (b) IU Logo with Quadtree Sectors

First, assume that we have the following Image class:

class Image {

private final int WIDTH;

private final int HEIGHT;

private final Color[][] PIXELS;

Image(int width, int height, Color[][] pixels) {

this.WIDTH = width;

this.HEIGHT = height;

for (int i = 0; i < this.HEIGHT; i++) {

for (int j = 0; j < this.WIDTH; j++) {

this.PIXELS[i][j] = pixels[i][j];

}

}

}

Color getPixel(int x, int y) { return this.PIXELS[x][y]; }

int getWidth() { return this.WIDTH; }

int getHeight() { return this.HEIGHT; }

}

You are tasked with designing the QuadTree class, which builds a QuadTree from an Image. We will
design the class incrementally.

Quadtrees are made up of sectors. A QuadTree, in fact, is nothing more than four sectors (hence the
prefix “quad”). A sector contains an (x, y) coordinate pair denoting the center coordinates of the sector,
and a size s of the sector. For our purposes, all images will be square, with dimensions that are divisible
by 4, so all sectors are also square-shaped.

C212 Final Exam Page 4 of 20

(a) (15 points) Design the Sector class, whose constructor receives an x, y, and s denoting the center
(x, y) coordinate pair and the dimensions of the sector respectively. The class also stores four sepa-
rate Sector instance variables representing the topLeft, topRight, bottomLeft, and bottomRight

“sub-divisions” of the QuadTree. In the constructor, initialize these fields to null, but design setter
methods for them. You should also design the necessary accessor methods.

The skeleton code is below.

class Sector {

private final int CENTER_X; // Center X.

private final int CENTER_Y; // Center Y.

private final int SIZE; // Size of the sector.

private Sector topLeft;

private Sector topRight;

private Sector bottomLeft;

private Sector bottomRight;

Sector(___________________________________) {

}

________ getTopLeft() { return _________________; }

________ getTopRight() { return _________________; }

________ getBottomLeft() { return _________________; }

________ getBottomRight() { return __________________; }

_____ setTopLeft(___________) { _______________________________________; }

_____ setTopRight(___________) { _______________________________________; }

_____ setBottomLeft(___________) { _______________________________________; }

_____ setBottomRight(___________) { _______________________________________; }

_____ getCenterX() { return this.CENTER_X; }

_____ getCenterY() { return this.CENTER_X; }

_____ getSize() { return this.SIZE; }

}

C212 Final Exam Page 5 of 20

(b) (10 points) Design the QuadTree class instance variables and constructor. Its constructor receives
an Image and assigns it to an instance variable. The constructor should also instantiate a Sector

instance variable representing the root of the quadtree. Hint: what is the “center” of an image?
Those are the coordinates to pass to the Sector constructor.

class QuadTree {

QuadTree(_______________) {

}

}

(c) (15 points) Now, we get to the heart of the quadtree: sub-divisions. The quadtree is populated
based on the following rules:

(i) If a sector s contains only pixels of the same color, it should not be further sub-divided.

(ii) Otherwise, split s into four smaller sub-sectors, representing the top-left, top-right, bottom-left,
and bottom-right “squares.” Recursively sub-divide these sectors.

So, as you can most likely guess (from the fact that we literally stated it one sentence ago),
subdivide is recursive, but interestingly, it does not return a value! Instead, it receives a Sector s
and sets its fields accordingly (remember those setter methods that you defined in the last ques-
tion?). But, before we design subdivide we need to figure out what it means for a sector to “contain
only pixels of the same color.” Of course, exactly as it sounds, it means we need to traverse over
the pixels that this sector represents and check to see if they are all the same color.

Design the private static boolean isUniformSector(Sector s, Image I) method that re-
turns whether the pixels of I that sector s represents are all the same color. You can compare two
colors using the .equals implementation of Color. Hint: use two for loops, and make sure that
you understand what are the lower and upper bounds for the loops. You want to traverse from the
top-left to the bottom-right of the sector, and you know what the center coordinate is, as well as the
sector size. Do the math!

The skeleton code is on the next page.

C212 Final Exam Page 6 of 20

class QuadTree {

// ... other information not shown.

/**

* A sector is uniform with respect to an image if all pixels in the

* sector are of the same color.

* @param s the sector to check.

* @param img the image whose pixels to check.

* @return true if the sector is uniform, false otherwise.

*/

private static boolean isUniformSector(Sector s, Image img) {

Color c = null;

int startX = sector.getX() - sector.getSize() / 2;

int endX = __;

int startY = __;

int endY = __;

// Loop over the sector pixels and check for uniformity.

for (int x = ________; x < __________; x++) {

for (___) {

}

}

return ______;

}

}

(d) (20 points) Design the private void subdivide(Sector s) method, which sub-divides a given
sector s into four sectors if it is not uniform. So, this method should be a simple case analysis
of whether s is uniform according to the method that you just wrote. There is one caveat: if the
size of s is less than or equal to 1, then it cannot be further sub-divided. You must correctly call
isUniformSector to receive full points. You may assume that its implementation is correct even
without having fully completed part (c). Hint: this question may be worth a lot of points, but it is
extremely straightforward; do not over-complicate it!

The skeleton code is on the next page.

C212 Final Exam Page 7 of 20

class QuadTree {

private static boolean isUniformSector(Sector s, Image img) { ... }

/**

* Subdivides the quadtree sector if necessary. We try each sector and, if it isn't

* a "uniform" sector with respect to the image, then we subdivide it. If the sector

* is too small, i.e., has a dimension of 1, we cannot further subdivide.

* @param s the sector to subdivide, if necessary.

*/

private void subdivide(Sector s) {

if (s.getSize() == 1) {

return;

} else if (___________________________________){

int dim = s.getSize() / 2; // Use this variable if you need it.

Sector topLeft = ___;

Sector topRight = ___;

Sector bottomLeft = ___;

Sector bottomRight = ___;

// Assign to the instance variables.

// Recurse on each sector.

}

}

C212 Final Exam Page 8 of 20

Answer the following questions with at most 2-3 sentences. Do not throw everything and the kitchen
sink into your answer!

(e) (3 points) In the best, average, and worst cases, what is the asymptotic runtime of isUniformSector?
If you express your answer in terms of n, then you may assume that n is the dimension of the sec-
tor. You do not need to formally prove your answer or state any reasoning, but you must give your
answer in terms of O, Ω, or Θ notation. Full points are awarded to the best choice.

(f) (3 points) What is an example of a “worst-case” input for a quadtree when compressing an image?

(g) (4 points) Consider the worst-case runtime of subdivide, which is an image where every pixel is a
different color. Each time we subdivide, we invoke isUniformSector, but in the worst-case, each
subdivision is exactly 1 × 1. Importantly, each subdivision halves the problem size, which
relates to the height of the quadtree h.

More generally, at each level i of the quadtree, there are 4i sectors, each of size (n/2i) × (n/2i).
The number of pixels in each sector, therefore, is (n/2i)2.

To analyze the “amount of work done” at level i, multiply together 4i and (n/2i)2, giving us T ′(n).

Then, to compute the worst-case runtime, we multiply the height of the quadtree h with T ′.

Finish the derivation to compute the worst-case runtime of the subdivide method, T (n). Give your
answer in terms of Θ(·). You will need to figure out what exactly h is in terms of n, but we gave
you a hint in this problem—look for it! Hint: the tight bound is one that we have not explicitly
seen an example of in class.

T (n) = h · T ′(n)

=

=

=

= Θ()

Part II

Recommended Time: 60 minutes

2 Problems

C212 Final Exam Page 10 of 20

2. (30 points) This question has three parts.

Consider the problem of removing adjacent characters in a string by propagation.

For example, the string "abba" has two adjacent characters "bb". Upon removing those, we have the
string "aa", which are also adjacent. Upon removing those, we have the string "".

Another example is "aabcdefff". We first remove the adjacent "aa" to get "bcdefff". Then, we
remove "ff" to get "bcdef". None of the remaining characters are adjacent.

A final example is "bcddeddddf". we first remove the adjacent "dd" to get "bceddddf". We then remove
the second "dd" to get "bceddf". Finally, we remove the third "dd" to get "bcef".

(a) (6 points) Design the int returnAdjCharsIdx(String s) method that, when given a string s,
returns the index of the first occurrence of adjacent characters in s. If no characters are adjacent
in s, return −1. Your solution can use either recursion or a loop.

static int returnAdjCharsIdx(String s) {

}

(b) (12 points) Design the tail recursive String removeAdjCharsTR(String s) method that removes
any and all adjacent characters in a given string using the process from above. Assume that
returnAdjCharsIdx works correctly, regardless of what you wrote in part (a). You must use
returnAdjCharsIdx in your solution to receive full credit.

static String removeAdjCharsTR(String s) {

}

C212 Final Exam Page 11 of 20

(c) (12 points) Design the String removeAdjCharsLoop(String s) method that solves the problem
using a loop. Assume that returnAdjCharsIdx works correctly, regardless of what you wrote in
part (a). You must use returnAdjCharsIdx in your solution to receive full credit.

static String removeAdjCharsLoop(String s) {

}

C212 Final Exam Page 12 of 20

3. (50 points) In this question, you will implement a simple payment type hierarchy for a point-of-sale
system.

(a) (3 points) First, design the IPaymentMethod interface, which contains three methods: String

paymentDetails(), double process(double subtotal), and String paymentType().

___________ IPaymentMethod {

/**

* Returns the details associated with this payment. For this object

* hierarchy, it will be the email address of the payment recipient.

* @return String of details.

*/

_________ _________________________________;

/**

* Processes a payment according to some specification.

* @param subtotal total of transaction before any processing.

* @return total amount after applying processing.

*/

_________ _________________________________;

/**

* Returns the "kind" of payment this is.

* @return payment type as a string.

*/

_________ _________________________________;

}

(b) (3 points) Next, design the ITaxable interface, which contains only one method: double tax(double

subtotal). This interface describes any kind of item that can be taxed, when given a subtotal.

___________ ITaxable {

/**

* Returns the amount after applying some form of a tax to the subtotal.

* @param subtotal total before applying the tax.

* @return taxed amount plus subtotal.

*/

__________ ____________________________________;

}

C212 Final Exam Page 13 of 20

(c) (6 points) Our payment hierarchy will have some classes that can throw exceptions if a transaction
attempts to exceed a limit. Therefore, you will create a custom exception type.

Design the LimitExceededException class, which extends RuntimeException, whose constructor
receives the “class type” as a string, the limit amount and transaction amount both as double

values. You should pass to the superclass constructor a message of the form:

paymentType: transaction of transactionAmount exceeds limit of limitAmount.

___________ LimitExceededException _______ ___________________ {

LimitExceededException(___) {

super(___);

}

}

(d) (14 points) Design the DigitalPayment abstract class, which implements both IPaymentMethod

and ITaxable. Its constructor should receive the email of the transaction recipient and a value to
represent a “convenience fee” for a digital transaction. Store these as instance variables, and design
the appropriate accessor and mutator methods.

Inside the constructor, if the supplied email is either null or the empty string, throw an IllegalArg-
umentException with a sensible error message.

Override the four methods from the interface as follows: make process, tax, and paymentType

abstract. Do not make paymentDetails abstract; instead, return the email associated with the
transaction.

Finally, design the void validateTransaction(double limitAmount, double transactionAmount)

method that, when given a limit amount and a transaction amount, if the latter is greater than the
former, throw a LimitExceededException and pass the payment type by calling paymentType(),
limitAmount, and transactionAmount.

The skeleton code is on the next page.

C212 Final Exam Page 14 of 20

__________ _________ DigitalPayment __________ ______________________________________ {

DigitalPayment(___) {

}

@Override

_________ _________ _________ process(_____________);

@Override

_________ _________ _________ tax(_____________);

@Override

_________ _________ _________ paymentType();

@Override

_________ _________ paymentDetails() {

}

/**

* Validates if the transaction limit is exceeded.

* If it is, an exception is thrown.

* @param limitAmount transaction limit.

* @param amount total amount of transaction.

*/

void validateTransactionLimit(double limitAmount, double amount) {

}

// Write the remaining getters and setters.

}

C212 Final Exam Page 15 of 20

(e) (12 points) Design the CreditCard class, which extends DigitalPayment, and receives the email of
its recipient as an argument to its constructor. CreditCard charges a flat convenience fee of $4.50
to every transaction. Its tax rate is 3.75%. Finally, its transaction limit is $1500. Store all three of
these values as private and static constants.

To tax a CreditCard transaction, multiply the subtotal by the tax constant as defined above. The
returned value is the amount after applying the tax percentage.

To process a CreditCard transaction, add the convenience fee to the taxed subtotal. Then,
you should validate the transaction amount by invoking validateTransactionLimit. Return the
transaction amount.

The paymentType of CreditCard is "CreditCard".

class CreditCard extends ___________________ {

_________ _________ ________ ________ CONVENIENCE_FEE = ______;

_________ _________ ________ ________ TAX = ______;

_________ _________ ________ ________ LIMIT = ______;

CreditCard(String email) {

super(___________________________________);

}

@Override

public double process(double subtotal) {

}

@Override

public double tax(double subtotal) {

}

@Override

public String paymentType() {

}

}

C212 Final Exam Page 16 of 20

(f) (12 points) Design the Cash class, which implements IPaymentMethod and ITaxable but does not
extend DigitalPayment. The constructor should receive the name of the recipient and store it
as an instance variable. The tax rate of Cash payments is 5%. There is no convenience fee and
no transaction limit. There is, however, a discount applied to all Cash transactions, which is a
flat 10%.

To tax a Cash payment, multiply the subtotal by the tax percentage. The returned value is the
amount after applying the tax percentage.

To process a Cash payment, apply the tax to the discounted subtotal, and return that value.

The paymentType of Cash is "Cash".

The paymentDetails of Cash is simply the name of the recipient.

class Cash implements IPaymentMethod, ITaxable {

private static final double DISCOUNT = __________;

private static final double TAX = 1.05;

private String recipient;

Cash(String recipient) {

}

@Override

public double process(double subtotal) {

}

@Override

public double tax(double subtotal) {

}

@Override

public String paymentType() {

}

}

C212 Final Exam Page 17 of 20

4. (0 points) This question has no required parts. Answering any of the following questions awards extra
credit. You should use only the space provided to write your answer; anything more embellishes upon
what we’re looking for.

(a) (2 extra credit points) Is the following statement true or false? Explain why. “Big-Oh represents
the worst-case runtime of an algorithm.”

(b) (3 extra credit points) What is an example of a “best-case” input for a quadtree when compressing
an image?

(c) (5 extra credit points) Using your answer for T (n) from Question 1, part (g), prove ONE of the
following statements using either the formal definition(s) or limits. Circle the one that you are
proving.

• T (n) = O(n3)

• T (n) = Ω(n2)

(d) (4 extra credit points) Design an algorithm that computes how efficient a quadtree compression is
from the raw pixel data of an image. You can do this using either pseudocode, Java code, or even
a mathematical analysis. In any case, you should compute the percent change from the raw data
to the quadtree compression. There is not necessarily a right answer that we’re looking for, so a
reasonable attempt, even if incorrect, can earn some points!

C212 Final Exam Page 18 of 20

(e) (4 extra credit points) What is the lower-bound for comparison-based sorting algorithms? Explain,
intuitively, why this is the case. If you are capable of reproducing the proof, that is fine, but make
it concise.

(f) (2 extra credit points) What is the difference between parallelism and concurrency?

(g) (2 extra credit points) What is a race condition, and how can we prevent them?

(h) (3 extra credit points) What’s the most important thing that you learned from C212 this semester?

C212 Final Exam Page 19 of 20

Scratch work

C212 Final Exam Page 20 of 20

Scratch work

