
C212 Practice Midterm Exam (150 points)
Oct 9, 2024

C212 Practice Midterm Exam Rubric

C212 Practice Midterm Exam Page 2 of 16

1. (20 points) Design the double cookingScore(String type, double oz, int costDollars,

int costCents, boolean isAppealing) method, which scores a culinary piece in a cooking
contest. The returned score is a value in the interval [0, 10].

A type is one of:

- "Cake"

- "Pasta"

- "Pie"

- "Burger"

Below are the criteria for scoring the piece:

• If the type is "Cake" or "Pasta", the base score is 1. If the type is "Burger", the base
score is 0.5. If the type is "Pie", the base score is 0.75. Any other type is an automatic
zero.

• If the weight oz is less than 4, their (current) score is multiplied by 0.9. If 4 ≤ oz ≤ 20,
their (current) score is multiplied by y such that y = 1/16oz + 0.25. Otherwise, their
(current) score is multiplied by 0.2.

• The combined price of the piece adds a fixed amount to the score up to a total of $5.00.
Anything beyond this subtracts that amount from the score. For example, if the combined
cost of a piece is $1.25, then its score is increased by 1.25. On the other hand, if the
combined cost of a piece is $6.75, then its score is decreased by $1.75.

• If the piece is appealing, add a constant factor of 1.5 to the piece.

C212 Practice Midterm Exam Page 3 of 16

Solution. This is admittedly a pretty evil question and is harder than one I would put on an
actual exam, but serves as great practice for writing comprehensive tests.

Rubric:

• (1 pt) example when type is "Cake".

• (1 pt) example when type is "Pasta".

• (1 pt) example when type is "Burger".

• (1 pt) example when type is "Pie".

• (1 pt) example when type is not one of the four types.

• (1 pt) example when the score should be capped by the interval. Either side is fine.

• (2 pts) purpose statement sensible.

• (2 pts) signature is correct.

• (2.5 pts) initial score of the “type” is correct.

• (2.5 pts) weight calculation and conditions are correct.

• (2.5 pts) combined price score is correct.

• (1 pt) appealing flag correctly updates score.

• (1.5 pts) score is correctly capped by the interval.

import static Assertions.assertAll;

import static Assertions.assertEquals;

class CookingScoreTester {

@Test

void testCookingScore() {

assertAll(

() -> assertEquals(0, cookingScore("Junk", 3, 1, 0, false)),

() -> assertEquals(1.9, cookingScore("Cake", 3, 1, 0, false)),

() -> assertEquals(3.4, cookingScore("Pasta", 3, 1, 0, true)),

() -> assertEquals(1.28125, cookingScore("Burger", 5, 1, 0, false)),

() -> assertEquals(0, cookingScore("Pasta", 5, 1000000000, 0, false)),

() -> assertEquals(2.921875, cookingScore("Pie", 5, 1, 0, true)));

}

}

C212 Practice Midterm Exam Page 4 of 16

class CookingScore {

/**

* Computes the score of some food.

* @param type one of "Cake", "Pasta", "Pie", or "Burger".

* @param oz weight in oz

* @param costDollars cost in whole dollars

* @param costCents cost in cents

* @param isAppealing whether it’s appealing

* @return score

*/

static double cookingScore(String type, double oz,

int costDollars, int costCents,

boolean isAppealing) {

double score = 0;

// Type

if (type.equals("Cake") || type.equals("Pasta")) { score = 1; }

else if (type.equals("Burger")) { score = 0.5; }

else if (type.equals("Pie")) { score = 0.75; }

else { return 0; }

// Weight

if (oz < 4) { score *= 0.9; }

else if (oz >= 4 && oz <= 20) {

double y = 1.0 / 16 * oz + .25;

score *= y;

} else { score *= 0.2; }

// Price

double combinedPrice = costCents / 100.0 + costDollars;

if (combinedPrice <= 5) { score += combinedPrice; }

else { score = score - (combinedPrice - 5); }

// Score and max/min.

score += (isAppealing ? 1.5 : 0);

return Math.min(10, Math.max(0, score));

}

}

C212 Practice Midterm Exam Page 5 of 16

2. (25 points) This question has three parts.

A parenthesized string is a string enclosed by parentheses. For example, the string "(abc)pqr(de)"
contains two parenthesized strings: "abc", and "de".

For the following problems, you may assume that there are no nested parentheses, all paren-
theses are balanced, and if there is a parenthesized string, it contains at least one character.

Solution.

Rubric:

(a) • (2 pts) correct signature.
• (2 pts) correct base case.
• (5 pts) correctly finds the string inside the non-base case, and recurses correctly.

static List<String> collectParenthesizedStrings(String s) {

if (!s.contains("(")) {

return new ArrayList<>();

} else {

int l = s.indexOf("(");

int r = s.indexOf(")");

String inside = s.substring(l + 1, r);

List<String> rest = collectParenthesizedStrings(s.substring(r + 1));

List<String> all = new ArrayList<>();

all.add(inside);

all.addAll(rest);

return all;

}

}

C212 Practice Midterm Exam Page 6 of 16

(b) Rubric:

• (1 pt) correct driver method.
• (1 pt) tail recursive method uses private access modifier.
• (3 pts) correct conditionals.
• (3 pts) correctly updates accumulator.

static List<String> collectParenthesizedStringsTR(String s) {

List<String> acc = new ArrayList<>();

return collectParenthesizedStringsTRHelper(s, acc);

}

private static List<String> collectParenthesizedStringsTRHelper(String s,

List<String> acc) {

if (!s.contains("(")) {

return acc;

} else {

int l = s.indexOf("(");

int r = s.indexOf(")");

String inside = s.substring(l + 1, r);

List<String> newAcc = new ArrayList<>();

newAcc.addAll(acc);

newAcc.add(inside);

return collectParenthesizedStringsTRHelper(s.substring(r + 1), newAcc);

}

}

C212 Practice Midterm Exam Page 7 of 16

(c) Rubric:

• (1 pt) correct signature.
• (1 pt) localized accumulators.
• (2 pts) correct loop condition.
• (2 pts) correctly updates local variables.
• (2 pt) correct return value.

static List<String> collectParenthesizedStringsLoop(String s) {

List<String> acc = new ArrayList<>();

while (s.contains("(")) {

int l = s.indexOf("(");

int r = s.indexOf(")");

String inside = s.substring(l + 1, r);

List<String> newAcc = new ArrayList<>();

newAcc.addAll(acc);

newAcc.add(inside);

acc = newAcc;

s = s.substring(r + 1);

}

return acc;

}

C212 Practice Midterm Exam Page 8 of 16

3. (35 points) Consider a network of friends, as follows. An arrow from one name A to another B
means that A is friends with B.

Alice

Bob Charlie David

Eve

Grace

HeidiFrank

Igor

Jacob Karel Linda

Marta

Nora

Oscar

We want to find the longest contiguous friend sequence. That is, given a name, we want to find
the length of the chain of friends that is the longest. In the above diagram, this is the path
from Alice to Oscar, with a length of 11.

Alice

Bob Charlie David

Eve

Grace

HeidiFrank

Igor

Jacob Karel Linda

Marta

Nora

Oscar

C212 Practice Midterm Exam Page 9 of 16

Here’s the idea: we need a recursive algorithm to traverse the friend relationship. Each time
we run into a new friend, we want to add one to a counter, and if we encounter a cycle, we
stop recursing. To do so, let’s design two methods: int longestFriendSequence(String s,

Map<String, List<String>> friendList) and an accompanying helper method.

The helper method receives three arguments: the name of the friend that we’re recursing on,
the friend list, and a set of names that we have visited thus far. The friendList is nothing
more than a map of names to who their friends are, according to the relationship diagram. For
example, one such entry is "Alice" that maps to ["Bob", "Charlie"].

As we said, the helper method receives a friend name f and adds it to the set of visited
friends S. Then, it loops over their friends according to the map. For every friend f ′, we invoke
the helper method on f ′, which returns a length l. If l > m, where m is the maximal length
found thus far, it is updated accordingly. After the loop, we remove f from S and return m+1
to designate that this path contains f .

Fill in the following code to complete this algorithm.

Solution.

Rubric:

• (35 pts) 12 blanks, each is worth 2.5 points. The one that makes the recursive call is
worth 7.5 points. These are all-or-nothing points.

C212 Practice Midterm Exam Page 10 of 16

import java.util.*;

class FriendPath {

/**

* Find the longest path of friends from a friend.

* @param f friend to start from.

* @param friends map of friends.

* @return the longest path from the friend.

*/

static int longestFriendPath(String f, Map<String, List<String>> friends) {

Set<String> visited = new HashSet<>();

return longestFriendPathHelper(f, friends, visited);

}

/**

* Helper method to recursively find the longest path from a friend.

* @param f friend to start from.

* @param friendsList map of friends.

* @param visited set of visited friends.

* @return the longest path from the friend.

*/

private static int longestFriendPathHelper(String f,

Map<String, List<String>> friendsList,

Set<String> visited) {

if (visited.contains(f)) {

return 0; // If visited, no length should be added from this path.

} else if (friendsList.get(f).isEmpty()) {

return 0; // If no friends are listed.

} else {

visited.add(f);

int max = 0;

for (String friend : friendsList.get(f)) {

int pathLength = longestFriendPathHelper(friend, friendsList, visited);

if (pathLength > max) {

max = pathLength;

}

}

visited.remove(f);

return max + 1;

}

}

}

C212 Practice Midterm Exam Page 11 of 16

4. (35 points) Consider the following problem: you want to determine whether there are any pairs of
elements P such that P [0] = P [1] · 10. That is, consider the following array of elements.

[10, 90, 41, 16, 3, 30, 410, 9]

There are three pairs P1 = {9, 90}, P2 = {41, 410}, and P3 = {3, 30} that meet this criteria.

Design the Set<Set<Integer>> findMultiplesOf10(int[] A) method that, when given an array of
integers A, returns a set of pairs (that are also sets) such that it and its value as a multiple of ten are
in the array. The order in which you return the resulting pairs, i.e., P1, . . . , Pn does not matter, but the
elements of those pairs should be in increasing order.

This seems easy: use two for loops, right? Well, we are adding a restriction: you must solve this
problem recursively. You should design two helper methods:

findMultiplesOf10Helper(int[] A, int idx, Set<Set<Integer>> S)

and

Set<Integer> findPair(int[] A, int n)

The former recurses over the array, appending the sets found by findPair onto the accumulator S, and
the latter returns a set if n ∈ A and n · 10 ∈ A. Note that findPair can (and probably should) use a
loop.

The tester skeleton code is on the next page, and the skeleton code for the implementation
is on the page thereafter. You can use math notation for your test cases and not full
declarations of sets or arrays.

C212 Practice Midterm Exam Page 12 of 16

Solution.

Rubric:

• (9 points) +3 points for each Javadoc. Partial points where necessary.

• (3 points) +3 points for the correct findMultiplesOf10 definition.

• (7 points) +3 points for each test. +2 points for each correct test.

• (8 points) +8 points for the correct findMultiplesOf10Helper definition.

• (8 points) +8 points for the correct findPair implementation.

class FindMultiplesOf10Tester {

@Test

void testFindMultiplesOf10() {

assertAll(

() -> assertEquals(Set.of(Set.of(9, 90), Set.of(41, 410), Set.of(3, 30)),

findMultiplesOf10(new int[]{10, 90, 41, 16, 3, 30, 410, 9})),

() -> assertEquals(Set.of(),

findMultiplesOf10(new int[]{10, 99, 11, 1111})),

() -> assertEquals(Set.of(),

findMultiplesOf10(new int[]{})));

}

}

import java.util.HashSet;

import java.util.Set;

class FindMultiplesOf10 {

static Set<Set<Integer>> findMultiplesOf10(int[] A) {

Set<Set<Integer>> S = new HashSet<>();

return findMultiplesOf10Helper(A, 0, S);

}

private static Set<Set<Integer>> findMultiplesOf10Helper(

int[] A,

int idx,

Set<Set<Integer>> S) {

// Base case: if we have hit the end, return the accumulator.

if (idx >= A.length) {

return S;

} else {

Set<Integer> newS = findPair(A, A[idx]);

// If the returned set is not null, we add it.

if (newS != null) {

S.add(newS);

}

return findMultiplesOf10Helper(A, idx + 1, S);

}

}

C212 Practice Midterm Exam Page 13 of 16

private static Set<Integer> findPair(int[] A, int num) {

Set<Integer> S = new HashSet<>();

for (int i = 0; i < A.length; i++) {

// If we found the matching value, add it.

if (A[i] == num * 10) {

S.add(num);

S.add(num * 10);

}

}

return S.isEmpty() ? null : S;

}

}

C212 Practice Midterm Exam Page 14 of 16

5. (35 points) Design the generic static <T> List<T> interleave(List<T> l1, List<T> l2, int m,

int n) method that, when given two lists l1, l2 and two integers m,n, returns a new list with the first m
elements of l1, then the first n elements of l2, then the next m elements of l1, and so forth. If there are
less than m elements left to take from l1 or there are less than n elements left to take from l2, take the
rest of the lists. You may assume that m,n ≥ 1. We provide an example below.

interleave(List.of("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"),

List.of("10", "20", "30", "40", "50"),

3,

2)

=> List.of("a", "b", "c", "10", "20", "d", "e", "f", "30", "40",

"g", "h", "i", "50", "j")

Solution. Note that this problem is a bit too long-winded to include on the actual exam, but it’s good
to be able to do! Notice the similarities to the “merging” procedure that you probably used in the
“median finder” question on PSet3.

Rubric:

• (5 points) +5 points for the Javadoc.

• (10 points) +4 points for four tests. +1.5 for each correct test.

• (20 points) +20 points for a correct implementation. Partial points apply where necessary.

C212 Practice Midterm Exam Page 15 of 16

class InterleaveTester {

@Test

void testInterleave() {

assertEquals(List.of("a", "b", "c", "10", "20", "d", "e", "f", "30", "40",

"g", "h", "i", "50", "j"),

interleave(List.of("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"),

List.of("10", "20", "30", "40", "50"),

3,

2)),

assertEquals(List.of(),

interleave(List.of(),

List.of(),

3,

2)),

assertEquals(List.of(10, 20, 30, 40, 50),

interleave(List.of(10, 20, 30, 40, 50),

List.of(),

1,

500)),

assertEquals(List.of(10, 20, 30, 40, 50),

interleave(List.of(),

List.of(10, 20, 30, 40, 50),

500,

1)));

}

}

C212 Practice Midterm Exam Page 16 of 16

import java.util.*;

class Interleave {

static <T> List<T> interleave(List<T> l1, List<T> l2, int m, int n) {

List<T> newLs = new ArrayList<>();

int currL1 = 0;

int currL2 = 0;

// While we still have elements to poll from both...

while (currL1 < l1.size() && currL2 < l2.size()) {

for (int i = currL1; i < l1.size() && i < currL1 + m; i++) {

newLs.add(l1.get(i));

}

for (int i = currL2; i < l2.size() && i < currL2 + n; i++) {

newLs.add(l2.get(i));

}

currL1 += m;

currL2 += n;

}

// If there are some left from L1...

while (currL1 < l1.size()) {

for (int i = currL1; i < l1.size() && i < currL1 + m; i++) {

newLs.add(l1.get(i));

}

currL1 += m;

}

// If there are some left from L2...

while (currL2 < l2.size()) {

for (int i = currL2; i < l2.size() && i < currL2 + n; i++) {

newLs.add(l2.get(i));

}

currL2 += n;

}

return newLs;

}

}

