
C212 Practice Midterm Exam (150 points)
Oct 9, 2024

Please read these directions before starting your exam.

This is a closed-note exam aside from your one page of notes, double-sided. You may not
use any electronic devices to complete this exam, nor can you communicate with anyone
besides the proctors and professor. If you are caught cheating, you will receive an F in the
course.

For any question, unless specified otherwise, you may use any class without a corre-
sponding import. E.g., if you want to use HashMap, you do not need to also import
java.util.HashMap.

Unless otherwise stated, you do not need to spell out the “full design recipe”, i.e., write
the signature, documentation comments, and tests. Of course, doing so may aid you in
your solution.

If you find a mistake, please raise your hand and let one of the proctors know; we will
determine whether or not this is the case.

When you are finished, turn in your exam and notes sheet if you have one, then quietly exit.

You have 75 minutes to complete the exam, but it is designed to take only 60 minutes.

Good luck!

Question Points Score

1 20

2 25

3 35

4 35

5 35

Total: 150

Name:

IU Email:

C212 Practice Midterm Exam Page 2 of 15

1. (20 points) Design the double cookingScore(String type, double oz, int costDollars,

int costCents, boolean isAppealing) method, which scores a culinary piece in a cooking
contest. The returned score is a value in the interval [0, 10].

A type is one of:

- "Cake"

- "Pasta"

- "Pie"

- "Burger"

Below are the criteria for scoring the piece:

• If the type is "Cake" or "Pasta", the base score is 1. If the type is "Burger", the base
score is 0.5. If the type is "Pie", the base score is 0.75. Any other type is an automatic
zero.

• If the weight oz is less than 4, their (current) score is multiplied by 0.9. If 4 ≤ oz ≤ 20,
their (current) score is multiplied by y such that y = 1/16oz + 0.25. Otherwise, their
(current) score is multiplied by 0.2.

• The combined price of the piece adds a fixed amount to the score up to a total of $5.00.
Anything beyond this subtracts that amount from the score. For example, if the combined
cost of a piece is $1.25, then its score is increased by 1.25. On the other hand, if the
combined cost of a piece is $6.75, then its score is decreased by $1.75.

• If the piece is appealing, add a constant factor of 1.5 to the piece.

In designing this method, follow the design recipe from class; write the signature, purpose
statement, testing, and then do the implementation. You should probably use simple numbers
for the inputs so you can calculate the values in your head. As you can see, there are tons of
possible inputs. You need to write at least four tests, one for each “type.”

The skeleton code is on the next page.

The following methods may be helpful.

double Math.max(double a, double b) returns the maximum of a and b.
double Math.min(double a, double b) returns the minimum of a and b.

C212 Practice Midterm Exam Page 3 of 15

import static Assertions.assertAll;

import static Assertions.assertEquals;

class CookingScoreTester {

@Test

void testCookingScore() {

}

}

class CookingScore {

/**

*

*

* @param

* @param

* @param

* @param

* @param

* @return

*/

_________ _________ cookingScore(double type, double oz, int costDollars,

int costCents, boolean isAppealing) {

}

}

C212 Practice Midterm Exam Page 4 of 15

2. (25 points) This question has three parts.

A parenthesized string is a string enclosed by parentheses. For example, the string "(abc)pqr(de)"
contains two parenthesized strings: "abc", and "de".

For the following problems, you may assume that there are no nested parentheses, all paren-
theses are balanced, and if there is a parenthesized string, it contains at least one character.

(a) (9 points) Design the standard recursive collectParenthesizedStrings method, which
receives a String S and returns a List of all the parenthesized strings of S.

Hint: what is your base case?

(b) (8 points) Design the collectParenthesizedStringsTR method and its accompanying
helper method collectParenthesizedStringsTRHelper. The former acts as the driver
to the latter; the latter solves the same problem as collectParenthesizedStrings does,
but it instead uses tail recursion. Remember to include the relevant access modifiers!

C212 Practice Midterm Exam Page 5 of 15

(c) (8 points) Design the collectParenthesizedStringsLoop method, which solves the
problem using either a while or for loop.

C212 Practice Midterm Exam Page 6 of 15

3. (35 points) Consider a network of friends, as follows. An arrow from one name A to another B
means that A is friends with B.

Alice

Bob Charlie David

Eve

Grace

HeidiFrank

Igor

Jacob Karel Linda

Marta

Nora

Oscar

We want to find the longest contiguous friend sequence. That is, given a name, we want to find
the length of the chain of friends that is the longest. In the above diagram, this is the path
from Alice to Oscar, with a length of 11.

Alice

Bob Charlie David

Eve

Grace

HeidiFrank

Igor

Jacob Karel Linda

Marta

Nora

Oscar

C212 Practice Midterm Exam Page 7 of 15

Here’s the idea: we need a recursive algorithm to traverse the friend relationship. Each time
we run into a new friend, we want to add one to a counter, and if we encounter a cycle, we
stop recursing. To do so, let’s design two methods: int longestFriendSequence(String s,

Map<String, List<String>> friendList) and an accompanying helper method.

The helper method receives three arguments: the name of the friend that we’re recursing on,
the friend list, and a set of names that we have visited thus far. The friendList is nothing
more than a map of names to who their friends are, according to the relationship diagram. For
example, one such entry is "Alice" that maps to ["Bob", "Charlie"].

As we said, the helper method receives a friend name f and adds it to the set of visited
friends S. Then, it loops over their friends according to the map. For every friend f ′, we invoke
the helper method on f ′, which returns a length l. If l > m, where m is the maximal length
found thus far, it is updated accordingly. After the loop, we remove f from S and return m+1
to designate that this path contains f .

Fill in the following code to complete this algorithm.

C212 Practice Midterm Exam Page 8 of 15

import java.util.*;

class FriendPath {

/**

* Find the longest path of friends from a friend.

* @param f friend to start from.

* @param friends map of friends.

* @return the longest path from the friend.

*/

static int longestFriendPath(String f, Map<String, List<String>> friends) {

Set<String> visited = new HashSet<>();

return longestFriendPathHelper(f, friends, visited);

}

/**

* Helper method to recursively find the longest path from a friend.

* @param f friend to start from.

* @param friendsList map of friends.

* @param visited set of visited friends.

* @return the longest path from the friend.

*/

private static int longestFriendPathHelper(String f,

Map<String, List<String>> friendsList,

Set<String> visited) {

if (__________________________) {

return 0; // If visited, no length should be added from this path.

} else if (________________________) {

return 0; // If no friends are listed.

} else {

____________.add(__________);

int max = 0;

for (_____________ friend : friendsList._________(_______)) {

int pathLength = __;

if (______________________________) {

________________________________;

}

}

visited.remove(_____________________);

return _______________________;

}

}

}

C212 Practice Midterm Exam Page 9 of 15

4. (35 points) Consider the following problem: you want to determine whether there are any pairs
of elements P such that P [0] = P [1] · 10. That is, consider the following array of elements.

[10, 90, 41, 16, 3, 30, 410, 9]

There are three pairs P1 = {9, 90}, P2 = {41, 410}, and P3 = {3, 30} that meet this criteria.

Design the Set<Set<Integer>> findMultiplesOf10(int[] A) method that, when given an
array of integers A, returns a set of pairs (that are also sets) such that it and its value as a
multiple of ten are in the array. The order in which you return the resulting pairs, i.e., P1, . . . , Pn

does not matter, but the elements of those pairs should be in increasing order.

This seems easy: use two for loops, right? Well, we are adding a restriction: you must solve
this problem recursively. You should design two helper methods:

findMultiplesOf10Helper(int[] A, int idx, Set<Set<Integer>> S)

and

Set<Integer> findPair(int[] A, int n)

The former recurses over the array, appending the sets found by findPair onto the accumu-
lator S, and the latter returns a set if n ∈ A and n · 10 ∈ A. Note that findPair can (and
probably should) use a loop.

The tester skeleton code is on the next page, and the skeleton code for the im-
plementation is on the page thereafter. You can use math notation for your test
cases and not full declarations of sets or arrays.

C212 Practice Midterm Exam Page 10 of 15

import static Assertions.assertAll;

import static Assertions.assertEquals;

class FindMultiplesOf10Tester {

@Test

void testFindMultiplesOf10() {

assertAll(

() -> assertEquals(___________________________________,

findMultiplesOf10(_____________________________________)),

() -> assertEquals(___________________________________,

findMultiplesOf10(_____________________________________)),

() -> assertEquals(___________________________________,

findMultiplesOf10(_____________________________________)),

);

}

}

C212 Practice Midterm Exam Page 11 of 15

import java.util.*; // Import all necessary collections.

class FindMultiplesOf10 {

/**

*

* @param A

* @return

*/

static Set<Set<Integer>> findMultiplesOf10(int[] A) {

Set<Set<Integer>> S = new HashSet<>();

return _________________________(A, 0, S);

}

/**

*

* @param A

* @param idx

* @param S

* @return

*/

private static Set<Set<Integer>> findMultiplesOf10Helper(

int[] A,

int idx,

Set<Set<Integer>> S) {

// Base case: if we have hit the end, return the accumulator.

if (_______________) {

return ____;

} else {

Set<Integer> newS = ____________(_________________________);

// If the returned set is not null, we add it.

if (___________________) {

S.________(________);

}

return ___________________________________(A, ____________, S);

}

}

// =================== CODE CONTINUED ON NEXT PAGE =================== //

C212 Practice Midterm Exam Page 12 of 15

/**

*

* @param A

* @param num

* @return tuple/pair, as a set, of num and its multiple of ten.

* If one does not exist, we return null.

*/

private static Set<Integer> findPair(int[] A, int num) {

Set<Integer> S = _______________________;

for (int i = 0; i < _____________; i++) {

// If we found the matching value, add it.

if (___________________________) {

S.______(___________________);

S.______(___________________);

}

}

return ________________ ? null : _______;

}

}

C212 Practice Midterm Exam Page 13 of 15

5. (35 points) Design the generic static <T> List<T> interleave(List<T> l1, List<T> l2,

int m, int n) method that, when given two lists l1, l2 and two integers m,n, returns a new
list with the first m elements of l1, then the first n elements of l2, then the next m elements
of l1, and so forth. If there are less than m elements left to take from l1 or there are less than n
elements left to take from l2, take the rest of the lists. You may assume that m,n ≥ 1. We
provide an example below.

interleave(List.of("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"),

List.of("10", "20", "30", "40", "50"),

3,

2)

=> List.of("a", "b", "c", "10", "20", "d", "e", "f", "30", "40",

"g", "h", "i", "50", "j")

C212 Practice Midterm Exam Page 14 of 15

Scratch work

C212 Practice Midterm Exam Page 15 of 15

Scratch work

