
C212 Midterm Exam (80 points)
Oct 9, 2024

C212 Midterm Exam Rubric

C212 Midterm Exam Page 2 of 10

1. (20 points) Design the String determineRating(String genre, int timeLength, boolean

hasViolence, boolean hasStrongLanguage, boolean hasAdultThemes)method, which de-
termines the parental rating of a movie. The method cannot return null, and must return a
valid “rating” as defined below.

A rating is one of:

- "G"

- "PG"

- "PG-13"

- "R"

- "A"

A genre is one of:

- "Action"

- "Comedy"

- "Drama"

- "Horror"

The ratings are on an interval scale: "G" < "PG" < "PG-13" < "R" < "A". You should
correspond the ratings to the natural numbers 1, 2, 3, 4, and 5 respectively.

Below are the criteria for rating a movie:

• If the genre is "Horror" or "Action", the base rating is "PG-13". If the genre is "Drama",
the base rating is "PG". If the genre is "Comedy", the base rating is "G".

• If the movie runtime, timeLength, is less than 60, their (current) rating is lowered by one
level. If 60 ≤ timeLength ≤ 120, their (current) rating remains the same. Otherwise,
their (current) rating is increased by one level.

• If the movie hasViolence, the rating is increased by one level.

• If the movie hasStrongLanguage, the rating is increased by one level.

• If the movie hasAdultThemes, the rating is increased by two levels.

C212 Midterm Exam Page 3 of 10

Solution.

Rubric:

• 5 points for tests, 1 point per DISTINCT rating.

• 5 points for the Javadoc. 2 points for the purpose, and 3 for the parameter and return
tags. Take off at most 3 points, one for each missing.

• 4 points for checking for each rating.

• 1 point for validating the time length, violence, strong language, and adult themes.

• 2 points for correctly calling rating. No points are awarded for this portion if the method
can return null.

import static Assertions.assertEquals;

class MovieRatingTester {

void testDetermineRating() {

assertEquals("G", MovieRating.determineRating("Comedy", 60, false, false, false));

assertEquals("PG", MovieRating.determineRating("Action", 50, false, false, false));

assertEquals("PG-13", MovieRating.determineRating("Horror", 30, true, false, false));

assertEquals("R", MovieRating.determineRating("Drama", 121, false, true, false));

assertEquals("A", MovieRating.determineRating("Horror", 300, true, true, true));

}

}

class MovieRating {

/**

* Rates a movie according to a criteria.

* @param genre the genre of the movie.

* @param timeLength length of movie in minutes..

* @param hasViolence whether the movie has violence.

* @param hasStrongLanguage whether the movie has strong language.

* @param hasAdultThemes whether thhe movie has adult themes.

* @return a movie rating, either G, PG, PG-13, R, or A.

*/

static String determineRating(String genre, int timeLength, boolean hasViolence,

boolean hasStrongLanguage, boolean hasAdultThemes) {

int rating = 0;

if (genre.equals("Action") || genre.equals("Horror")) { rating = 3; }

else if (genre.equals("Comedy")) { rating = 1; }

else { rating = 2; }

if (timeLength < 60) { rating -= 1; }

else if (timeLength > 120) { rating += 1; }

if (hasViolence) { rating += 1; }

if (hasStrongLanguage) { rating += 1; }

if (hasAdultThemes) { rating += 2; }

return rating(Math.max(1, Math.min(rating, 5)));

}

}

C212 Midterm Exam Page 4 of 10

2. (25 points) This question has three parts.

Solution.

Rubric:

(a) • (2 pts) correct signature.
• (3 pts) correct return values in non-helper (< 0)
• (4 pts) uses standard recursion and accumulates the index (if it’s not private that’s
fine). If they forgot the cast on Math.max, that’s fine. +1 point for using recursion.
+2 points for having correct conditionals or using Math.max. +1 for passing the
correct values to the method.

static int findMaxWordLength(String[] arr) {

return longestStringHelper(arr, 0);

}

private static int findMaxWordLengthHelper(String[] arr, int idx) {

if (idx >= arr.length) return 0;

else {

return (int) Math.max(arr[idx].length(), findMaxWordLengthHelper(arr, idx+1));

}

}

C212 Midterm Exam Page 5 of 10

(b) Rubric:

• (1 pt) correct driver method.
• (1 pt) tail recursive method uses private access modifier.
• (3 pts) correct conditionals. +2 for a correct base case, +1 for a correct “else/else if”
clause.

• (3 pts) correctly updates accumulator and n.

static int findMaxWordLengthTR(String[] arr) {

return findMaxWordLengthTRHelper(arr, 0, 0);

}

private static int findMaxWordLengthTRHelper(String[] arr, int idx, int len) {

if (idx >= arr.length) return len;

else {

return findMaxWordLengthTRHelper(arr, idx + 1, (int) Math.max(len, arr[idx].length()));

}

}

C212 Midterm Exam Page 6 of 10

(c) Rubric:

• (1 pt) correct signature.
• (1 pt) localized accumulators.
• (2 pts) correct loop condition.
• (2 pts) correctly updates local variables.
• (2 pt) correct return value.

static int findMaxWordLengthLoop(String[] arr) {

int idx = 0;

int len = 0;

while (!(idx >= arr.length)) {

len = (int) Math.max(len, arr[idx].length());

idx++;

}

return len;

}

C212 Midterm Exam Page 7 of 10

3. (35 points) The prime factorization problem is about finding prime numbers that multiply to
some positive integer. That is, given a positive integer n, we want to find its prime factors. It
is an open mathematics and computer science question whether it is possible to find the prime
factorization of a positive integer in polynomial time. The näıve algorithm is to iterate over
the primes from 2, 3, ..., n, find the lowest prime p that divides n, divide n by p, then repeat
until n is prime.

We can visualize this algorithm via a prime factor tree. For example, let’s find the prime
factorization of 330. The smallest prime starting from 2 that divides 330 is 2. So, the root of
the tree is 330, the left branch leads to a prime factor, and the right is a smaller sub-problem,
that being 330/2 = 165. The smallest prime that divides 165 is 3, so we get 3 in the left branch
and 55 in the right branch. Repeat once more to get 5 and 11, and we stop because 11 is prime.

330

2 165

3 55

5 11

class PrimeFactorTree {

/**

* Returns whether a positive integer is prime.

* @param n integer > 0.

* @return true if prime, false otherwise.

*/

static boolean isPrime(int n) { /* Implementation not shown. */ }

/**

* Creates a list of all the prime factors of n. The resulting list

* should contain only prime numbers and have a product equal to the input.

* @param n integer >= 2.

* @return list of prime factors.

*/

static List<Integer> primeFactors(int n) { /* To be implemented in part (b). */ }

/**

* Creates the prime factor tree from a given integer. The

* "tree" is a list of prime factors where the ith item is

* the root of a tree, the (i + 1)th branch is the prime factor,

* and the (i + 2)th prime factor tree.

* @param n integer >= 2.

* @return a list representing the prime factor tree as described.

*/

static List<Integer> primeFactorsTree(int n) { /* To be implemented in part (c). */ }

}

C212 Midterm Exam Page 8 of 10

(a) (7 points) Write JUnit test cases for the isPrime method. You do not need to know how
it works, only that it receives a positive integer n and returns true if it is prime and false

otherwise.

Solution.

Rubric:

• 5 tests, must be correct. 2 points for the “true” cases, and 3 for the “false” cases.

@Test

void testIsPrime() {

assertTrue(isPrime(127));

assertTrue(isPrime(13));

assertFalse(isPrime(0));

assertFalse(isPrime(1));

assertFalse(isPrime(10));

}

(b) (14 points) Design the static List<Integer> primeFactors(int n) that, when given
a positive integer n ≥ 2, returns a list of all the prime factors of n. For example,
primeFactors(330) returns [2, 3, 5, 11] because all numbers in the returned list are
prime and their product equals the input 330. Your definition must call isPrime in order
to receive full credit.

Solution.

Rubric:

• 2 points for the initialization of the list.

• 2 points for the return.

• 4 points for a correct outer loop.

• 6 points for the condition check, adding numbers to the loop, and so forth. -3 points if they
do not have an outer loop/do not reset i back to 2. Not sure how to divide partial points
otherwise.

static List<Integer> primeFactors(int n) {

List<Integer> ls = new ArrayList<>();

while (n > 1) {

for (int i = 2; i <= n; i++) {

if (isPrime(i) && n % i == 0) {

ls.add(i);

n /= i;

break;

}

}

}

return ls;

}

C212 Midterm Exam Page 9 of 10

(c) (14 points) Design the static List<Integer> primeFactorsTree(int n) method that
creates a “factor tree” as a list. That is, consider once again the prime factorization of 330.
The returned list should be [330, 2, 165, 3, 55, 5, 11], because the left branch of 330 leads to
the prime factor 2, and the right branch leads to a factoring of 165. Your definition must
call both isPrime and primeFactors in order to receive full credit.

Solution.

Rubric:

• 2 points for calling primeFactors with n.

• 2 points for loop while not isPrime(n). Not sure how they can solve it otherwise.

• 10 points for correctly adding factors to the list. Award partial points as needed but be
consistent.

static List<Integer> primeFactorsTree(int n) {

List<Integer> ls = new ArrayList<>();

List<Integer> primeFactors = primeFactors(n);

ls.add(n);

while (!isPrime(n)) {

int p = primeFactors.removeFirst();

ls.add(p);

n /= p;

ls.add(n);

}

return ls;

}

C212 Midterm Exam Page 10 of 10

4. (35 points) Solution.

Rubric:

• (2 points) Javadoc comment exists and all fields are full. This is an all-or-nothing point value.

• (3 points) The empty map test.

• (6 points) +2 points for testing a LinkedHashMap. +4 points for if it’s correct.

• (6 points) +2 for testing a TreeMap. +4 points for if it’s correct.

• (10 points) Correctly looping over the keys and concatenating them onto the string. +4 for adding
the key as a string. +4 for adding the value as a string. +2 for adding the = character. +2 for
adding the trailing comma. Note: calling toString on the object is not required as Java coerces
the type into a string and implicitly calls its toString. You can see I do this for the value.

• (5 points) accounts for edge case of removing the last comma and space.

• (3 points) returning a string of any kind.

/**

* A sensible comment...

* @param M

* @return

*/

static <T, U> String convertToString(Map<T, U> M) {

String s = "{";

for (T t : M.keySet()) {

s += t.toString() + "=" + M.get(t) + ", ";

}

if (!M.isEmpty()) {

s = s.substring(0, s.length() - 2);

}

return s + "}";

}

