
C212 Midterm Exam (80 points)
Feb 28, 2024

Please read these directions before starting your exam.

This is a closed-note exam aside from your one page of notes, double-sided. You may not
use any electronic devices to complete this exam, nor can you communicate with anyone
besides the proctors and professor. If you are caught cheating, you will receive an F in the
course.

For any question, unless specified otherwise, you may use any class without a corre-
sponding import. E.g., if you want to use HashMap, you do not need to also import
java.util.HashMap.

Unless otherwise stated, you do not need to spell out the “full design recipe”, i.e., write
the signature, documentation comments, and tests. Of course, doing so may aid you in
your solution.

If you find a mistake, please raise your hand and let one of the proctors know; we will
determine whether or not this is the case.

When you are finished, turn in your exam and notes sheet if you have one, then quietly exit.

You have 75 minutes to complete the exam, but it is designed to take only 60 minutes.

Good luck!

Question Points Score

1 20

2 25

3 15

4 20

Total: 80

Name:

IU Email:

C212 Midterm Exam Page 2 of 10

1. (20 points) Design the double computeOvertimePay(double hrRate, double noHrs, boolean

onVacation, double taxRate) method that computes the amount of overtime pay (note:
only the overtime pay) given to an employee under the following conditions:

• An employee’s base overtime pay rate is 1.5 times their hourly rate.

• If the employee is on vacation, their pay rate is 2 times their hourly rate rather than 1.5.

• If the number of hours is less than or equal to 40, then no overtime pay is given.

• If the number of hours is greater than 70, then the resulting gross pay (before taxes) is
increased by 15%.

• The gross pay is subject to the tax percentage passed to the method.

In designing this method, follow the design recipe from class; write the signature, purpose
statement, testing, and then do the implementation. You should probably use simple numbers
for the inputs so you can calculate the values in your head. You must write tests that fully
cover all possible kinds of inputs.

The skeleton code is on the next page.

C212 Midterm Exam Page 3 of 10

import static Assertions.assertAll;

import static Assertions.assertEquals;

class ComputeOvertimePayTester {

@Test

void testComputeOvertimePay() {

}

}

class ComputeOvertimePay {

/**

*

*

* @param

* @param

* @param

* @param

* @return

*/

_________ _________ computeOvertimePay(double hrRate, double noHrs,

boolean onVacation, double taxRate) {

}

}

C212 Midterm Exam Page 4 of 10

2. (25 points) This question has three parts.

You are writing a multiple choice question exam score calculator. Correct answers award three
points, incorrect answers remove one point, and a "?" represents a guess, which neither awards
nor removes points.

(a) (9 points) Design the standard recursive score method, which receives two String arrays
representing the expected answers E and the actual answers A respectively. The score

method should return the score of the student as a percentage. If the raw score is less
than zero, then return a zero. Hint: designing a helper method is a good idea!

String[] E = new String[]{"A", "C", "D", "A", "B", "B", "D", "C", "C"};

score(E, new String[]{"A", "C", "D", "C", "B", "B", "C", "C", "C"} => 70.3

score(E, new String[]{"A", "C", "D", "A", "B", "B", "D", "C", "C"} => 100.0

score(E, new String[]{"A", "C", "?", "C", "?", "B", "?", "C", "C"} => 51.8

(b) (8 points) Design the scoreTR and scoreTRHelper methods. The former acts as the
driver to the latter; the latter solves the same problem as score does, but it instead uses
tail recursion. Remember to include the relevant access modifiers!

C212 Midterm Exam Page 5 of 10

(c) (8 points) Design the scoreLoop method, which solves the problem using either a while

or for loop.

C212 Midterm Exam Page 6 of 10

3. (15 points) Design the nthMostFrequentChar method that, when given a non-empty char[]

A and an int n, returns the nth most frequent character from the array. You may assume
that 1 ≤ n ≤ |A|. We provide three examples, but you cannot use these in your tests. You
cannot use the Stream API. In designing this method, follow the template from class;
write the signature, purpose statement, testing, and then do the implementation. You can use
abbreviated array notation, e.g., [1, 2, 3, ..., n], in your tests instead of Java code.

The skeleton code is on the next page.

This problem is harder than it looks. As a hint, first compute the frequencies of each character,
then traverse the map and look for the nth most frequent. This can be achieved by removing
keys from the map via .remove. A more clever (and performant) solution can be achieved with
a priority queue!

nthMostFrequentChar([’a’, ’c’, ’c’, ’a’, ’c’, ’b’, ’c’, ’d’, ’f’, ’b’], 2) => ’a’

nthMostFrequentChar([’a’, ’a’, ’a’, ’a’, ’b’, ’b’, ’b’, ’c’, ’c’, ’d’], 1) => ’a’

nthMostFrequentChar([’d’, ’c’, ’d’, ’b’, ’d’, ’c’, ’d’, ’c’, ’b’, ’a’], 3) => ’b’

C212 Midterm Exam Page 7 of 10

import static Assertions.assertAll;

import static Assertions.assertEquals;

class nthMostFrequentCharTester {

@Test

void testnthMostFrequentChar() {

}

}

import java.util.*; // Import all necessary collections.

class nthMostFrequentChar {

/**

*

* @param

* @param

* @return

*/

____________ ___________________ nthMostFrequentChar(__________ __________) {

}

}

C212 Midterm Exam Page 8 of 10

4. (20 points) Oh no! Hemeshwar’s Shih Tzu, Tipsy, ate part of this exam and we need you to
add the missing code. Fill in the blanks to complete this method implementation. Additionally,
write at least three examples, one for each case (you need to figure out what the cases are).
You can use abbreviated set notation, e.g., {1, 2, 3, ..., n}, in your tests instead of Java code.

import static Assertions.assertAll;

import static Assertions.assertEquals;

class ContainsNCommonValuesTester {

@Test

void testContainsNCommonValues() {

}

}

import java.util.Set;

import java.util.HashSet;

class ContainsNCommonValues {

/**

* Determines whether or not the given sets contains exactly n common elements.

* These elements are compared via their .equals method.

* @param s1 - first set.

* @param s2 - second set.

* @param n - an integer 1 <= n <= min(|s1|, |s2|)

* @return true if they contain common values and false otherwise.

*/

static _____ __________ containsNCommonValues(Set<_____> s1,

Set<_____> s2,

int n) {

int counter = ________;

Set<___> unionedSet = ____________________;

unionedSet.addAll(____);

unionedSet.________(____);

for (_____ v : unionedSet) {

if (____________________________) {

counter = _______________________;

}

}

return counter ____ ____;

}

}

C212 Midterm Exam Page 9 of 10

Scratch work

C212 Midterm Exam Page 10 of 10

Scratch work

