
C212 Midterm Exam Makeup (80 points)
Mar 06, 2024

Please read these directions before starting your exam.

This is a closed-note exam aside from your one page of notes, double-sided. You may not
use any electronic devices to complete this exam, nor can you communicate with anyone
besides the proctors and professor. If you are caught cheating, you will receive an F in the
course.

For any question, unless specified otherwise, you may use any class without a corre-
sponding import. E.g., if you want to use HashMap, you do not need to also import
java.util.HashMap.

Unless otherwise stated, you do not need to spell out the “full design recipe”, i.e., write
the signature, documentation comments, and tests. Of course, doing so may aid you in
your solution.

If you find a mistake, please raise your hand and let one of the proctors know; we will
determine whether or not this is the case.

When you are finished, turn in your exam and notes sheet if you have one, then quietly exit.

You have 75 minutes to complete the exam, but it is designed to take only 60 minutes.

Good luck!

Question Points Score

1 20

2 25

3 15

4 20

Total: 80

Name:

IU Email:

C212 Midterm Exam Makeup Page 2 of 10

1. (20 points) Design the double computeBonusPay(double baseSalary, int yearsOfService,

boolean achievedTarget, double salesAmount, double targetSales) method that cal-
culates the amount of bonus pay (only the bonus pay) given to an employee under the
following conditions:

• A base bonus rate of 10% of the base salary is given to employees who have achieved their
sales target.

• Employees with more than 5 years of service receive an additional 5% bonus of their base
salary.

• If the sales amount exceeds the target sales by more than 50%, the employee receives an
additional bonus of 25% of the base salary.

• If the employee has not achieved their sales target, they receive a flat bonus of 2% of their
base salary, regardless of sales amount or years of service.

• The total bonus amount is reduced by a flat tax rate of 25%.

In designing this method, follow the design recipe from class; write the signature, purpose
statement, testing, and then do the implementation. You should probably use simple numbers
for the inputs so you can calculate the values in your head. You must write tests that fully
cover all possible kinds of inputs.

The skeleton code is on the next page.

C212 Midterm Exam Makeup Page 3 of 10

import static Assertions.assertAll;

import static Assertions.assertEquals;

class ComputeBonusPayTester {

@Test

void testComputeBonusPay() {

}

}

class ComputeBonusPay {

/**

*

*

* @param

* @param

* @param

* @param

* @return

*/

static double computeBonusPay(double baseSalary, int yearsOfService,

double salesAmount, double targetSalesAmount) {

}

}

C212 Midterm Exam Makeup Page 4 of 10

2. (25 points) This question has three parts.

You are developing a system to help monitor and reduce electricity usage in households. The
system calculates the total energy consumption based on the number of hours each appliance
is used daily. Different appliances have different power ratings, which affects their energy
consumption.

(a) (9 points) Design the standard recursive calculateEnergymethod, which takes two arrays
as inputs: one representing the power ratings of various appliances P (in watts) and the
other representing the hours each appliance is used daily H. The method should return
the total energy consumed in a day by all appliances in kilowatt-hours (kWh). Appliances
not used (indicated by 0 hours) should not contribute to the total. Hint: designing a
helper method is a good idea!

double[] P = new double[]{100, 1500, 300, 1200, 60}; // Power ratings

calculateEnergy(P, new double[]{2, 4, 3, 0, 5}) => 8.46 kWh

calculateEnergy(P, new double[]{0, 2, 0, 1, 0}) => 3.3 kWh

calculateEnergy(P, new double[]{1, 0, 2, 3, 0}) => 2.16 kWh

(b) (8 points) Design the calculateEnergyTR and calculateEnergyTRHelper methods. The
former acts as the driver to the latter; the latter solves the same problem that calculateEnergy
does, but it instead uses tail recursion. Remember to include the relevant access modifiers!

C212 Midterm Exam Makeup Page 5 of 10

(c) (8 points) Design the calculateEnergyLoop method, which solves the problem using
either a while or for loop.

C212 Midterm Exam Makeup Page 6 of 10

3. (15 points) Design the nthCommonWordLength method that, when given a non-empty list of
strings W and an int n, returns the length of the nth most common word length in the list.
Assume 1 ≤ n ≤ the number of unique word lengths in W . We provide four examples, but
you cannot use these in your tests. You cannot use the Stream API. In designing this
method, follow the template from class; write the signature, purpose statement, testing, and
then do the implementation. You can use abbreviated array notation, e.g., [1, 2, 3, ..., n], in
your tests instead of Java code.

The skeleton code is on the next page.

This problem is harder than it looks at first glance. As a hint, compute a map of word lengths
to a list of words that have that length. Then, find the most-common word length and remove
that key/value pair. Keep doing this until n is zero.

nthCommonWordLength(["apple", "bat", "cat", "dog", "elephant", "fish", "goat"], 2) => 4

nthCommonWordLength(["hello", "world", "java", "python", "code"], 1) => 4

nthCommonWordLength(["one", "two", "three", "four", "five", "six"], 3) => 5

nthCommonWordLength(["cb", "bc", "a", "abc", "abc", "abc", "abc", "abc"], 2) => 2

C212 Midterm Exam Makeup Page 7 of 10

import static Assertions.assertAll;

import static Assertions.assertEquals;

class NthCommonWordLengthTester {

@Test

void testNthCommonWordLength() {

}

}

import java.util.*; // Import all necessary collections.

class NthCommonWordLength {

/**

*

* @param

* @param

* @return

*/

____________ ___________________ nthCommonWordLength(_______________, _______) {

}

}

C212 Midterm Exam Makeup Page 8 of 10

4. (20 points) Oh no! Joshua’s cat, Nebraska, scratched away part of this exam and we need
you to add the missing code. Fill in the blanks to complete this method implementation.
Additionally, write at least three examples, one for each case (you need to figure out what the
cases are). You can use abbreviated set notation, e.g., {1, 2, 3, ..., n}, in your tests instead of
Java code.

import static Assertions.assertAll;

import static Assertions.assertEquals;

class MergeKSortedListsTester {

@Test

void testMergeKSortedLists() {

}

}

import java.util.List;

import java.util.ArrayList;

import java.util.PriorityQueue;

class MergeKSortedLists {

/**

* Merges k sorted lists into one sorted list and returns it.

* The input is a list of lists, where each inner list is sorted in ascending order.

* @param lists - a list containing k sorted lists of integers.

* @return a single list containing all elements from the k lists in sorted order.

*/

static _____ ___________ mergeKSortedLists(List<List<___>> lists) {

PriorityQueue<___> pq = ____________________;

for (______________ list : lists) {

for (___ value : list) {

pq.___(_______);

}

}

List<Integer> result = new ArrayList<>();

while (_______________) {

result.add(pq._____);

}

return result;

}

}

C212 Midterm Exam Makeup Page 9 of 10

Scratch work

C212 Midterm Exam Makeup Page 10 of 10

Scratch work

