
C212 Final Exam (150 points)
April 29, 2024

C212 Final Exam Rubric

Part I

Recommended Time: 60 minutes

2 Problems

C212 Final Exam Page 3 of 16

1. (60 points) A particle system is a data structure that manages particles, or small effects, in a graphical
engine. Think of a video game that has smoke, fire, water, explosion, or other kinds of effects. In general,
these all use particle engines for managing hundreds of thousands of particle objects. Therefore, such
an engine should be efficient. In this question, you will implement a particle system similar to one that
I wrote a while ago!

(a) (4 points) First, design the Particle class. A Particle contains a double x and double y repre-
senting its position, a double width and double height representing its dimensions, and a double
dx and double dy representing its velocity. Finally, it contains a double life representing its life.
The constructor should receive these as parameters and assign them to the instance variables. You
do not need to write the respective accessors and mutators, and for all future problems, you may
assume they are trivially defined.

(b) (4 points) Inside the Particle class, design the update method, which adds the particle’s velocity
to its position. It should also decrement the life instance variable by one. If life ever becomes
zero or negative, the particle is no longer alive. If the particle isn’t alive, do not update its position
(nor decrement its life).

(c) (2 points) Design the isAlive method that returns whether or not the particle is alive.

The skeleton code is on the next page.

C212 Final Exam Page 4 of 16

Solution.

Rubric:

• (a) All instance variables are present. +2

• (a) The constructor exists. +1

• (a) All values are correctly initialized. (+1)

• (b) Velocity is updated. (+2)

• (b) Particle is not updated if dead. (+1)

• (b) Particle’s life is decremented. (+1)

• (c) isAlive is correct. (+2)

class Particle {

private double life, x, y, width, height, dx, dy;

Particle (double x, double y, double width, double height, double dx, double dy, double life) {

this.x = x;

this.y = y;

this.width = width;

this.height = height;

this.dx = dx;

this.dy = dy;

this.life = life;

}

/**

* Some comment...

*/

void update() {

if (this.life <= 0) { return; }

else {

this.x += this.dx;

this.y += this.dy;

this.life--;

}

}

boolean isAlive() {

return this.life <= 0;

}

}

C212 Final Exam Page 5 of 16

The idea behind this particle system is that we create a memory pool, and poll already-allocated
particles from it when available. That is, when a particle dies, it moves to the “dead” sector, but
that memory still exists. Then, when we want to create a new Particle, we first check to see if
there are any dead particles that we can reuse. If so, we reuse that particle’s allocated memory and
simply reassign variables.

(d) (5 points) Design the ParticleSystem class. Store the following instance variables and instantiate
them as LinkedList instances in the constructor. The constructor should also receive a value
maxAlive, which is assigned to a final int MAX ALIVE instance variable.

• List<Particle> alive, which stores the alive particles in the system. All particles in this list
should be non-null.

• List<Particle> dead, which stores the dead particles in the system. All particles in this list
should be non-null.

Solution.

Rubric:

• All three instance variables exist. (+2.5).

• MAX ALIVE is final. (+0.5).

• All variables are correctly assigned and instantiated as instructed. (+2)

class ParticleSystem {

private List<Particle> alive;

private List<Particle> dead;

private int MAX_ALIVE;

ParticleSystem(int maxAlive) {

this.alive = new LinkedList<>();

this.dead = new LinkedList<>();

this.MAX_ALIVE = maxAlive;

}

}

C212 Final Exam Page 6 of 16

(e) (20 points) Design the boolean addParticle(double x, double y, double w, double h, double

dx, double dy, double life) method that adds a particle to the system with the given parame-
ters. If there are no dead particles available, then simply allocate a new Particle onto the rear of
the alive list. If there is a dead particle, use that allocated space instead and assign the parameters
to the object using the respective setters. Then, move the particle out of the dead list and onto
the rear of the alive list. If it is impossible to add a new particle (because there is no space for
more alive particles), return false. Otherwise, return true.

The skeleton code is on the next page.

C212 Final Exam Page 7 of 16

Solution.

Rubric:

• Javadoc exists (+3).

• Size check (+2).

• if (!this.dead.isEmpty()) (+2)

• Removes first particle (+3)

• Correctly copies variables over USING SETTERS (+6). Just assigning them directly awards
ONLY ONE POINT.

• Correctly calls constructor (+2).

• Adds particle onto end of alivel ist. (+1)

• Returns true. (+1)

class ParticleSystem {

// ... previous methods not shown.

/**

* ... some huge javadoc

*/

boolean addParticle(double x, double y, double w, double h,

double dx, double dy, double life) {

// First check to see if there’s room anywhere in the system.

if (this.alive.size() >= MAX_ALIVE) {

return false;

} else {

// There must be room, so let’s determine if there’s a dead particle.

Particle p = null;

if (!this.dead.isEmpty()) {

// Remove the first particle off the front of "dead".

p = this.dead.removeFirst();

// Update the fields of p to those given as parameters.

p.setX(x);

p.setY(y);

p.setWidth(w);

p.setHeight(h);

p.setDx(dx);

p.setDy(dy);

p.setLife(life);

} else {

// Just allocate space for the new particle.

p = new Particle(x, y, w, h, dx, dy, life);

}

// Add p onto the rear of the alive list.

this.alive.add(p);

// Return success.

return true;

}

}

}

C212 Final Exam Page 8 of 16

(f) (2 points) Design the void removeParticle(Particle p) method that prompts for p to be re-
moved from the “alive” queue. All this method should do is toggle p to be no longer alive. By
prompt, we mean that it does not affect either List.

Solution.

Rubric:

• Uses setter (+2). Zero points if anything else. If they included an instance variable that sets
the life, it can only be awarded points if it was declared in part (a).

class ParticleSystem {

// ... previous methods not shown.

/**

* Blah blah blah

* @param p -

*/

void removeParticle(Particle p) {

p.setLife(0);

}

}

(g) (8 points) Design the void updateSystem() method that traverses over the alive particles, and
invokes their update methods. After invoking a particle’s update method, check to see if it is alive
or not. If it is not alive, move it out of the alive list and into the dead list. Solution.

Rubric:

• Javadoc. (+1)

• Loop condition is correct. (+1)

• Correct if condition (+2).

• Correct if consequent body. (+3)

• Correct if alternative body. (+1)

class ParticleSystem {

// ... previous methods not shown.

/**

* Some comment...

*/

void updateSystem() {

for (int i = 0; i < this.alive.size(); i++) {

// If the particle is dead, remove it and add to dead list.

if (this.alive.get(i).isAlive()) {

this.dead.add(this.alive.remove(i));

i--;

} else {

// Otherwise, update the particle.

this.alive.get(i).update();

}

}

}

}

C212 Final Exam Page 9 of 16

Answer the following questions with at most 2-3 sentences. Do not throw everything and the kitchen
sink into your answer!

(h) (10 points) Why do we not traverse the alive list inside removeParticle to remove the given
particle directly? What are the performance implications of doing so?

Solution. The problem is that this would result in a Θ(n2) operation in the worst-case, where n is
the number of particles in the system. One loop over each particle, then another for removeParticle
if called.

(i) (10 points) The particle system knows the maximum capacity of alive and dead particles. Despite
this, we still choose to use a dynamically-allocated list for storing references to the alive and dead
particles. It may seem like a better choice to use an array instead, and simply use one-half for
the alive particles and one-half for the dead particles. What is the MAIN disadvantage of this
approach? Hint: what can we not do with arrays that we can with lists?

Solution. Removing an alive particle would leave a slot ”open” and we’d have to keep track of
those free slots when reallocating a particle. A list can dynamically resize; an array cannot.

C212 Final Exam Page 10 of 16

2. (20 points) This question has two parts and reuses the Particle class from the first question.

(a) (10 points) Design the SparkParticle class, which inherits from Particle. “Spark particles” move
in a straight line, but their velocity decreases over time due to air resistance until they stop moving.

• The SparkParticle constructor receives the same values as its superclass counterpart.

• Override the update method to decrease the vertical and horizontal velocities by 10% with
each call to update. Do not call super.update(). Instead, update the position of the particle
directly inside this class. Remember that those variables are private in the Particle class.

• Override the isAlive method to return false when its horizontal and vertical velocity values
are both less than 0.01 away from zero. Otherwise, it should return true.

Solution.

Rubric:

• Constructor is correct (+3). If this class contains ANY instance variables, no points are awarded
for this.

• update is correct (+4).

• isAlive is correct (+3).

class SparkParticle extends Particle {

SparkParticle(double x, double y, double width, double height,

double dx, double dy, double life) {

super(x, y, width, height, dx, dy, life);

}

@Override

public void update() {

this.setDx(this.getDx() * 0.90);

this.setDy(this.getDy() * 0.90);

}

@Override

public boolean isAlive() {

return this.getDx() <= 0.1 && this.getDy() <= 0.1;

}

}

C212 Final Exam Page 11 of 16

(b) (10 points) Design the SmokeParticle class, which inherits from Particle. “Smoke particles”
move in a straight line, but their velocity decreases over time due to air resistance until they stop
moving.

• The SmokeParticle constructor receives the same values as its superclass counterpart.

• Override the update method to increase the width and height dimensions by 2% with each call
to update. Do not call super.update(). Instead, update the position of the particle directly
inside this class (the behavior is the same as the Particle superclass. Remember that those
variables are private in the Particle class. Finally, decrement the life by 0.2 rather than 1.

Solution.

Rubric:

• Constructor is correct (+3). Same stipulations as the former.

• update is correct. (+7)

class SmokeParticle extends Particle {

SmokeParticle(double x, double y, double width, double height,

double dx, double dy, double life) {

super(x, y, width, height, dx, dy, life);

}

@Override

void update() {

this.setWidth(this.getWidth() * 0.98);

this.setHeight(this.getHeight() * 0.98);

this.setX(this.getX() + this.getDx());

this.setY(this.getY() + this.getDy());

this.setLife(this.getLife() - 0.2);

}

}

Part II

Recommended Time: 60 minutes

3 Problems

C212 Final Exam Page 13 of 16

3. (30 points) This question has two parts.

Solution.

Rubric:

• Driver is correct (+2).

• Base case is correct (+2).

• Correct return value (+1).

• Body is correct and correctly switches between the three operations using TR (+5). 1 pt for the
operations. If it’s not TR, 0 points total.

static int cycleOperationsTr(List<Integer> vals) {

return cyclicOperationsTrHelper(vals, 0, 0, 0);

}

private static int cyclicOperationsTrHelper(List<Integer> vals, int idx, int c, int res) {

if (idx >= vals.size()) {

return res;

} else {

if (c == 0) {

return cyclicOperationsTrHelper(vals, idx + 1, (c + 1) % 3, res + vals.get(0));

} else if (c == 1) {

return cyclicOperationsTrHelper(vals, idx + 1, (c + 1) % 3, res - vals.get(0));

} else {

return cyclicOperationsTrHelper(vals, idx + 1, (c + 1) % 3, res * vals.get(0));

}

}

}

C212 Final Exam Page 14 of 16

Solution.

Rubric:

• Loop condition is correct (+3).

• Value is correctly accumulated (+5).

• Correct return value (+2).

static int cyclicOperationsLoop(List<Integer> vals) {

int idx = 0;

int c = 0;

int res = 0;

while (idx < vals.size()) {

if (c == 0) {

res = res + vals.get(0);

} else if (c == 1) {

res = res - vals.get(0);

} else {

res = res * vals.get(0);

}

idx = idx + 1;

c = (c + 1) % 3;

}

return res;

}

C212 Final Exam Page 15 of 16

4. (20 points) Design the MapSumPairs class that supports two operations: void insert(String s, int

v), and int sum(String suffix). The former adds the association of s to v in a map. The latter
returns the sum of all values whose keys end with the given suffix. You must follow the “design recipe”
laid out in class. That is, you must write the method purpose statements, tests, and the implementation.
You may write your tests as a series of insert calls, followed by calls to sum.

The tester skeleton code is on the next page, and the class skeleton is on the page thereafter.

Solution.

Rubric:

• (4 pts) at least two coherent examples.

• (2 pts) sensible purpose statement.

• (14 pts) definition works as expected.

class MapSumPairsTester {

@Test

void testMapSumPairs() {

assertAll(

Some sensible examples... :D

);

}

}

package problem4;

import java.util.HashMap;

import java.util.Map;

class MapSumPairs {

private Map<String, Integer> M;

MapSumPairs() {

this.M = new HashMap<>();

}

void insert(String s, int n) {

this.M.put(s, n);

}

int sum(String s) {

int su = 0;

for (String k : M.keySet()) {

if (k.endsWith(s)) {

su += M.get(k);

}

}

return su;

}

}

C212 Final Exam Page 16 of 16

5. (20 points) Oh no! Janmejay’s rabbit, Oreo, has nibbled part of this exam away and we need you to
fix the missing code. Fill in the missing code for this insertion sort implementation. Note that this is
a functional implementation of the insertion sort, which means that we return a new list rather than
sorting the one we provide.

Solution.

Rubric:

• −1 point for each incorrect blank up to −20. If they use AbstractList or use T for the type of
value returned by the random method, just accept it.

import java.util.List;

interface IInsertionSort<T extends Comparable<T>> {

List<T> insertionSort(List<T> ls);

}

class FunctionalInsertionSort<T extends Comparable<T>> implements IInsertionSort<T> {

@Override

public List<T> insertionSort(List<T> ls) {

if (ls.isEmpty()) { return new ArrayList<>(); }

else {

List<T> rest = ls.subList(1, ls.size());

return insert(ls.get(0), insertionSort(rest));

}

}

private List<T> insert(T val, List<T> sortedRest) {

if (sortedRest.isEmpty()) {

List<T> ls = new ArrayList<>();

ls.add(val);

return ls;

} else if (val.compareTo(sortedRest.get(0)) < 0) {

List<T> ls = new ArrayList<>();

ls.add(val);

ls.addAll(sortedRest);

return ls;

} else {

List<T> ls = new ArrayList<>();

ls.add(sortedRest.get(0));

ls.addAll(insert(val, sortedRest.subList(1, sortedRest.size())));

return ls;

}

}

}

