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Introduction:
The difficulty in learning formal logic comes primarily from the fact that many 
students simply have not seen the material before - the unfamiliarity is rather 
intimidating. Moreover, we have seen that, when students learn topics such as truth 
trees, truth tables, proofs, and other concepts related to first-order predicate and 
propositional logic, they want to understand the practicality of it. In addition, 
practice makes perfect when studying for these subjects, and having access to 
problems as well as solutions is often requested by the students. Of course, a 
professor/instructor can post these with step-by-step explanations, but even then, a 
student may be lost. We hope to solve the majority of these problems with our 
in-progress tool: LLAT (Logic-Learning Assistance Tool).

Tackling the issue of understanding the practicality is a challenge without directly 
exposing the students to the material, so that is what we have done. Within LLAT, 
there exist explanations for every concept and symbol that they can use, alongside 
axioms, definitions, symbol names, and formal names for that symbol. Further, to 
alleviate the fact that some logic courses use different symbols and notation, we 
give the ability to change the symbols to a set that they are familiar with. One issue 
with online solvers and programs comes from their restricting of the user to using 
one preset notation which most likely stems from either a “generalized” notation 
used in computer science and mathematics, or a hybrid of symbols from different 
styles. LLAT allows students to pick and choose which symbols they want from the 
various notations available.

Practice problems and exercises, alongside “live” explanations go a long way in 
improving the students’ overall comprehension of the material. This is why LLAT 
lets students insert any valid well-formed formula in propositional or first-order 
predicate logic, and the student can view different visual representations of said 
formula. Note that the validity of a well-formed formula varies from resource to 
resource, so we have standardized an approach used in the formal logic course 
offered at UNCG (PHI 310 - Introduction to Formal Logic). These explanations are 
offered in greater detail in the “Help” section of LLAT.

One final issue we wanted to address was translations. Sometimes, it may be 
difficult for a non-native English speaker to understand what this material means, 
so we allow them to translate the program into any alternative language.

Abstract:
Formal logic is considered by many philosophy majors to be challenging to 
overcome, exposing students to confusing symbols, rules, axioms, and other 
concepts that look similar to concepts from mathematics and computer science. 
We have seen students struggle with formal logic as a result of its conjectural and 
abstract nature, as well as the prolific and esoteric use of conceptual 
thought-processing. Figures or images (i.e., walking through the steps to solve a 
problem) frequently accompany textbooks and other sources when the need to 
demonstrate a problem or example arises. However, these often leave a lot to be 
desired - some concepts come easier than others, such as truth tables versus 
proof-based natural deduction, and it likewise depends on the person and their 
major/interests. Certain programming languages and websites exist that serve 
similar purposes but frequently do not provide user-friendly solutions to 
non-programmers and those that are not already experts at the material. Our 
current work is focused on building a visually appealing aid and tool to complement 
the traditional textbook and lecture pedagogy that provides beginner to 
intermediate students with a digital canvas to explore formal logic definitions, rules, 
and tools at their own pace in attempts to improve their overall understanding of the 
material.

Methods
LLAT offers three primary ways of viewing the results of a well-formed formula: 
parse trees, truth trees, and truth tables. After inputting a formula, the user may 
pick from several “algorithms” available  depending on how many formulas are 
entered. Formulas are delimited by a comma, and the selection of available 
algorithms will vary based on what type of formula, and how many, are entered. 
Our algorithm choices come from what we believe are the most important things to 
know about a formula when learning formal logic. For example, identifying the main 
operator of a formula is crucial in being able to construct truth tables, truth trees, 
confirm the validity of an argument, and much more. 

The following is a generalized list of all available algorithms to the user:

● Main operator detector 
● Closed, open, and ground sentence determiners 
● Truth table, truth tree and parse tree generators 
● Closed and open tree determiners 
● Logical relationship testers (equivalent, contradictory, consistent, contrary, 

implying, tautology, falsehood, and contingent) 
● Argument validity tester 
● Random propositional and predicate logic formula generators
● Export as .tex

Results:
Below are several screenshots of the program running with example inputs. We 
show different algorithms and features including a change of language, the login 
screen (to save preferences and last ten well-formed formulas used). The caption 
below each figure describes the algorithm used/task performed. 

Discussion:
Many of the features we wanted to implement have incredibly challenging algorithms 
that do not have “fast’ solutions available; only approximations. To compensate, we 
prevent the user from entering too large of well-formed formulas. For instance, the 
complexity of generating a truth table is exponential, so after fourteen atoms, the 
program becomes too slow to run (also referred to as the boolean satisfiability 
problem in computational complexity). Likewise, while propositional logic is 
decidable, first-order predicate logic is only semi-decidable due to its use of the 
universal quantifier and the identity symbol. As a result, truth trees (and the steps 
within) may be reconstructed indefinitely. So, we enforce a timeout when generating 
truth trees - once a large-enough tree is entered, the program informs the user that 
the tree is too large to be computed.

Another challenge we encountered was the desire to feature as many languages 
as possible, so as to improve the user experience if they are a non-native English 
speaker. We utilized the Google Translate API, which only works so well. 

Conclusions and Future Work:
Visual aids serve as an excellent alternative to a textbook or traditional lecturing, 
particularly for subjects which require much practice to perfect. In the future, we 
would like to add more algorithms, and improve on the ones we currently have. 
One example is to add support for natural deduction proofs as another method of 
determining the validity of an argument. 

In addition, we would like to improve the performance of some algorithms, such as 
the truth table generator. Further, better warning and detailed error messages for 
the user could drastically improve their overall experience with the application. 
Also, a major part in designing this application was to add step-by-step 
explanations for many algorithms. While these are listed in detail in the “Help” 
menu, we plan to add detailed descriptions for each step in several algorithms 
including the truth tree generation, and argument validity proofs. Finally, because 
there is very little available research on the generation of random predicate and 
propositional logic formulas, our algorithm is subjective and arbitrary at best, and 
unsolvable/undecidable at worst. So, improving the generation capabilities by 
allowing the user to choose how complex they want the generated well-formed 
formula to be could serve them greatly. 

In essence, LLAT is designed to improve the learning experience and process for 
students and teachers alike, and continued development and research on our part 
will refine the educational experience.
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Figure 1: Parse tree of a predicate logic formula. Figure 2: Determination of the validity of a 
propositional logic formula.

Figure 3: Testing for logical equivalence using 
truth trees, a dark theme, and an in-progress 

translation to Arabic.

Figure 4: Login screen so users can save 
preferences (theme, language), and last ten 

wffs.

Figure 5: Truth table example, showing the 
implication axiom in right pane.

Figure 6: Argument validity check with result at 
the top in first-order predicate logic.


