An Insight into Buffer Overflow Attacks and Kernel
Security in Operating Systems

L. Joshua Crotts
Department of Computer Science
University of North Carolina at Greensboro

Abstract—Attacks at the kernel of an operating system leave
it vulnerable to the curious enthusiast market, but likewise to
the malicious black-hat hacker group of users. Buffer overflow
attacks, in particular, aim at poorly-maintained software with
the desire to take advantage of unguarded sections of memory,
since direct manipulation to the kernel and operating system-level
modes are generally locked under tight control. However, some
user-level programs change and alter data at such a low level that
it opens holes and potential for damage and security risks. This
paper investigates the history of buffer overflow attacks, how it
plays into the development and security of operating systems,
as well as some insight into how these methods of attack work.
We use three papers as a reference for the figures, and relevant
information.

Index Terms—Buffer overflow, kernel, security, operating sys-
tems, Linux, vulnerability, C programming, integer overflow,
software engineering

I. INTRODUCTION

ER Cowan et al., buffer overflow attacks constitute the
greatest security vulnerability in the decades past [1].
Their interest to hackers and those to infiltrate a system is
relatively self-explanatory: with such a common and easy way
to exploit a system, it is no wonder why they choose this form
of attack over other, more complex alternatives. As suggested,
buffer overflow attacks allow malicious users to change the
state of a program or an operating system to do one of several
tasks, ranging from the collection of unintended/protected
data, to the desire of crashing the system altogether. When
attacking the kernel of an operating system (or the operating
system internals in general), one is attacking the trusted
computing base of a system [2]. Current and previous research
focuses on detecting buffer overflow attacks (as well as kernel
vulnerabilities and security risks), but preventing or mitigating
problems in the wild is a harder task than one may originally
believe. Dalton et al. state that many worms and viruses take
advantage of buffer overflow in unprotected software [3].
According to Chen et al., the aforesaid previous studies
and research attempted to experiment with theoretical patches
and the good intention of encapsulating an operating system
to the point where such important risks are not exposed to
the user in any way[2]. In addition, they also explore what
these vulnerabilities are, and how they affect the integrity of
an operating system. The authors note, however, that these
papers lack substance in understanding what techniques are
used to resolve the issues [2]. An operating system such as
Linux is very complicated to change, and while it may be

open-source (allowing for the non-malicious users to find and
understand bugs that cause security flaws), this opens the
potential for those willing to perform more egregious acts.
Moreover, because Linux is written in the non-safe language
of C, it is understandable that some would prefer rewriting
the kernel and structure in a language that enforce improved
paradigms which reflect higher-level programming languages
like bounds checking, but continues to operate at the lower
level required by system programmers. Of course, this feat is
not trivial, as the kernel is millions of lines of old and new
code. As a result, the challenge for writing secure and effective
code in an old language continues to dominate the Linux
kernel source, but as vulnerabilities are found and patched,
developers learn to investigate such problematic code and
protect what they write with the appropriate safeguards and
measures.

II. BUFFER OVERFLOW

Before we continue, let us define what a buffer overflow
attack is, in a more formal sense. Buffer overflow attacks are,
as the name implies, an attack on a piece of software that
allows for potential arbitrary code execution, root access, and
other upper-level permission tasks. These attacks by nature
attack a buffer in memory, which overwrites preexisting code
or data, thereby changing the state of the program. In other
words, according to Cowan et al., the overall goal of a buffer
overflow is to subvert the state of a program to perform acts
that were not intended by the programmer [1]. There are
numerous ways to “overflow” the “buffer”, but it depends on
what is being overflown, as well as what data is overflowing
said destination.

Several of these vulnerabilities are present in older C code,
with functions such as char sstrcat (char xdest,
const char xsrc). String manipulation and functions
that operate on strings or char pointer arrays are a prime target
for weaker C libraries and code in the kernel. This particular
example copies the const char pointer src to the end
of the destination array dest. Therefore, the dest buffer,
ideally, must have enough allocated bytes to store both its
original string (provided it exists; it may also be an empty
buffer), and the src buffer, concatenated onto the end of the
original. The naive implementation without an enforcing size
limit copies all data from src to dest, without care for if
it overwrote data elsewhere in the code. This poses a few
problems: firstly, we may experience a segmentation fault;

accessing data/memory outside the program space results in
an “exception” being thrown (a signal in C/operating system
terms, also known as SIGSEGV). If this does not occur,
however, then it may be the case that the attack fills the buffer,
but results in an attack that remains within the scope/memory
bounds of our program. In other words, the overflown written-
to memory is declared in the current memory stack.

At first glance, it may appear that this does not harm
the program or the end-user; if the buffer is filled with
“garbage” to the computer, then theoretically nothing occurs.
However, what happens if the program is to execute code via
a system call or exec immediately after the buffer data is
read? Then, it may be the case that the buffer overwrote that
executable code to perform something else; the unintended
consequences of the developer not guarding against large
input. We will further elaborate on this later. The solution to
this function, in particular, as we will also examine later with
a few other important C data-retrieval functions, is to limit
how much data goes into either buffer. Thus, a safer function
namely char =xstrncat (char xdest, const char
size_t bytes) exists to combat such issues.
This function copies n bytes from our src to the dest buffer,
and returns the result, bypassing the potential for an attack.

*source,

A. Buffer Overflow in C Functions

Several other C input functions pose problems similar to
what st rcat introduced. We will list a few and examine their
security risks, and then mention their safe(r) counterparts.

1) int scanf (const char *format,

...args) - An input function similar to the
standard output printf, scanf reads in a formatted
string, alongside pointer arguments to store the result of
the requested string. For example, scanf ("%$10s",
&buf) reads a string that is ten bytes long into
the pointer buf. Suppose that, for arguments
sake, we read in two strings with the following
code: scanf("%10s", &buf), scanf("%s",
&buf2) from standard input. Further suppose that
the first string s; = "1234567890ABCDE", s =
"ABCDEFGHIJ". The important detail here is that,
with the current implementation, the second call to
scanf will not properly execute. scanf ignores
trailing newline characters, meaning that our second
call consumes all remaining data in the input stream
after the first ten bytes are read from s;. The safe
alternative to scanf is to use a different function for
reading input data altogether, which we will present
next.

2) char xgets(char xsrc) - Another data input
function with the goal of reading in a string into a
buffer, as opposed to any arbitrary formatted input.
This function is simpler than scanf because, in
order to perform a buffer overflow, all one needs
to do is create a buffer of n bytes, then supply a
string with ng bytes such that ng > n. This, in turn,
fills src with more data than it is intended to hold,

which may overwrite other segments in the code
stack or cause a segmentation fault. The solution for
this function is to use the bounded-buffer function:
char xfgets(char *s, int size, FILE
xstream), which guards against overflow by only
reading size bytes from the stream pointer, which
is then stored in the pointer s.

3) char *strcpy(char *dest, const char
xsrc) - String copy function with almost identical
consequences to the previously-mentioned strcat
function. Copying more bytes than allocated into the
dest pointer results in overflow. The solution is to use
char =*strncpy(char =xdest, const char
xsrc, size_t n), copying only n bytes from src
to dest.

III. METHODS OF ATTACK

Now that we have explained several types of buffer overflow
risks and functions in C, we will describe key components to
an attack, and what makes one successful. There are a few
styles to buffer overflow attacks, each with their own goals
and methods of approach.

Cowan et al. propose two ‘“sub-goals”, describing two
possible candidates for starting a buffer overflow attack [1]:

1) Arrange the malicious code such that it exists in the
program space.

2) Arrange the malicious code such that, when performing
the overflow, a jump instruction (of some variation) leads
to the execution of said code.

We will examine and explain the two approaches, and fill in
some of our own details.

When arranging the code such that it exists in the program
space, this implies that we can inject malicious code into
the program to do what we desire. One approach to this is
to use preexisting code and “parameterize” it to satisfy our
needs. In other words, we alter the original input to the code
(provided that it exists), and substitute in our code. We alluded
to this previously with the exec example. Suppose that we
have a program that acts as as shell, and we read in the next
command via a call to gets (...), which stores the string
from standard input into a buffer b. Then, we immediately
call the Linux function execvp (. ..) in which we pass this
string, without parsing the input for validity. Further assume
that we overflow the buffer, and that our implementation of the
code uses this buffer when calling execvp. The attack is then
trivial because we can overflow b by overwriting the argument
space for the parameter of execvp, and store what we want
to execute, thereby changing the pointer. An example like this
is crucial to understanding the complexities and significance
of protecting against bad input and using functions that do not
have negative and unintended consequences, as we previously
suggested.

On the other hand, we can inject code that is not in the
currently-executing victim program, but rather what we wish
to execute. Storing the attack code in this way allows the
attacker to use it later, perhaps in a jump instruction via

a function pointer or misguided return address overwrite.
These buffers may be allocated in any segment of memory,
including the stack and the heap (static and dynamic memory
respectively).

Oppositely, we may arrange the malicious code such that
we alter the program control flow, bypassing whatever logic
currently exists in the code in favor of the arbitrary code
injected into a buffer. There are several methods to this, and
we will describe them as follows:

1) Stack-smashing: When a function is pushed onto the

2)

call-stack, an activation record is pushed in its place,
containing information such as the stack pointer, frame
pointer, return address, parameters pushed to the stack,
and space for temporary and local variables. For our
purposes, we will illustrate these commands with MIPS
assembly. Note that the MIPS code below was self-
written, whereas the x64 presented later is compiler-
generated.

.text
_main:

.globl main

; allocate 40 bytes for frame.

subu $sp, $sp, 40

; save return address.

sw $ra, 32 ($sp)

; save current frame pointer.

sw $fp, 28 ($sp)

xf_main:
; load old frame pointer
1w $fp, 28 ($sp)
; load return address
1w ra, 32 ($sp)
; deallocate stack frame.
addu sp, Ssp, 40

.data

;%

Note the load word (1w) instruction with the annotation
that it reloads the old return address off the stack frame.
Malicious code from a buffer overflow attack could
change this value. A buffer overflow will overwrite the
space allocated for the string and exceed into the space
for both the frame pointer and the return address if used
properly, thereby resetting the location to somewhere it
should not be. Thus, upon returning from the function
and destruction of the activation record, the instruction
pointer is misplaced, pointing at potentially malicious
code. According to Cowan et al., this is the most
common buffer overflow attack.

Another variation listed in the previous research uses
function pointers in C to redirect program control. A
function pointer is a pointer to a memory address
that acts as the starting instruction of the function it
points to. A similar comparison in modern programming
languages are callback functions. Therefore, a buffer
overflow attack may rewrite this address to point to a

function or segment that executes arbitrary code. The
difference between this and many other forms of attack
is the time of execution; it is not necessary for a
function pointer to be executed at a point in time, or
even at all depending on the program. Though, even
allowing for a rewrite to the address it points to is
a significant security flaw and oversight. Below is an
example of a function pointer, and the output in x64
assembly. For this, we compile via gcc with the —S flag
(all comments generated by the compiler are omitted).
Note that we create a function void £ (int =xn) that
simply reassigns the value pointed to by n:

void f(int =#n) {

*n = 5;

)

int main(int argc, char =argv[]) {
/+« Create a pointer to the function f

called fn_ptr that returns void and accepts
an integer pointer. :x/
void (% fn_ptr)(int*) = f;
int n = 125;
/% Call our function pointer and pass the
address of n. =/
fn_ptr(&n);
return 0;
}
.section
.globl _f
.p2align 4, 0x90
f:

.cfi_startproc
pushg srbp
.cfi_def_cfa_offset 16

.cfi_offset %rbp, -16

movq %rsp, %rbp

.cfi_def_cfa_register %rbp

movqg Srdi, -8 (%rbp)

movqg -8 (%rbp), S%Srax

mov1l $5, (%rax)

popg Srbp

retqg

.cfi_endproc

.globl _main

.p2align 4, 0x90
_main:

.cfi_startproc

pushg srbp

.cfi_def_cfa_offset 16

.cfi_offset %rbp, -16

movq %rsp, %rbp
.cfi_def_cfa_register %rbp
subg $32, %rsp

movl S0, —4(%rbp)
movl %$edi, -8 (%rbp)
movq $rsi, —-16(%rbp)
leag _f(%rip), S%rax
movq $rax, —24(%rbp)
movl $125, -28(%rbp)

leag -28(%rbp), %rdi
callg *=24 (%$rbp)
xorl %$eax, %eax

addqg $32, %rsp

popqg Srbp

retq

.cfi_endproc

7
The point of interest is the line callg *-24 ($rbp).
If this address offset from the base pointer is manipu-
lated via a buffer overflow, the program flow of control
is likewise altered.

A. Integer Overflow

We will briefly touch on integer overflow, since it relates
to the topic of buffer overflows in a similar manner. Integer
overflow or underflow occurs when the size of an operand ex-
ceeds the storage capacity for that value. For instance, a value
of 10,000,000,000 (ten billion) exceeds a 32-bit word sized
memory location, and if 64-bit instructions are not present
(as such in x86 assembly and others), using such a large
value may result in overflow. However, many implementations
guard against such inputs, so this generally does not result in
a problem. What can result in a problem is when a binary
operation is performed on two values that are very close to
that threshold. Suppose we take two signed 32-bit values x
and y, where x = y, and x = 2,147,483, 647, the maximum
value for a 32-bit integer. If we try to perform a signed add
operation on these values, for instance, then store them in a 32-
bit register, it is possible that a flag may be triggered, causing
sign errors or buffer sizes to allocate erroneously [2].

IV. SOLUTIONS

At this point, we have reviewed some assembly and C code,
and examined a few ways that buffer overflow attacks occur.
In this section, we will describe a few solutions to the problem
at hand.

One possibility, as suggested by several authors [1, 2,
3], is to always write clean and non-vulnerable code at
the kernel/operating system level(s). Implying that buffers
are maintained, checks are performed, and the programmer
writes impeccable and impenetrable code. Of course, in plenty
instances, this is easier said than done, primarily due to
the aggressive performance paradigm that C enforces over
program correctness at times. Combined with the fact that C is
a moderately unsafe language to begin with (as demonstrated
and elaborated on by the handful of above functions, as well
as the fact that raw pointers are used with no automatic
garbage collection), it is obvious why many consider C a
dangerous language to write in. Allowing programmers to
access memory directly, and providing the control of allocation
and de-allocation grants flexibility in the power and potential
of a program. Conversely, it leaves many, more novice (or
even the experienced) programmers at risk of accidentally
writing egregious code. Moreover, time is money to most
software engineers, and as a result, must resort to writing
fast code that may not catch all security risks and bugs.

Consequently, tools analyzing source code (static and dy-
namic analyzers) exist to find bugs and problems in source
code, as well as compiler-generated warnings when using a
volatile (unrelated to the C volatile keyword) function.
For example, when using gets (char sbuf), the compiler
outputs the following warning, informing the programmer
to consider choosing a different, non-antiquated function:
"warning: the ‘gets’ function is dangerous
and should not be used.". An issue with some static
analyzers, though, is the sheer number of false positives
encountered [2].

Another possibility is to check all array or pointer bound-
aries - meaning that every time a buffer is used or allocated,
as well as any writing performed to the buffer, we check to
make sure that the size of some input does not exceed the
buffer size. Whether this is done at the user-level or compiler-
level is a different debate altogether, but performing checks at
both levels guarantees an extra needed layer of security instead
of solely dedicating the job to a compiler.

Canaries are a compiler-generated solution to mitigating an
attack as it occurs. Canaries are random values placed next
to the return address in memory on the stack frame, and if a
stack-smashing attack occurs, the program can continue in a
way that ensures security and safety is maintained. A random
32-bit canary, for instance, is chosen due to the fact that it
is hard to guess with a typical stack-smashing attack; if the
attacker is unaware that a canary exists, they have no easy
way to combat it.

FFFF
Attack
code >
return
Stringh | address Stack
Growth| | canary Growth
Local
variables|
buff
=~ 0000

Fig. 1. Example of canary - random 32-bit word is placed directly next to
the return address on the stack. Buffer overflows will haphazardly overwrite
this value as well. This figure is used in paper [1].

The primary problem of a buffer overflow attack is that,
when arbitrary code is inserted into the buffer, that code is
executable in some way if no safeguards are implemented.
So, a solution to this is to make all buffers non-executable
[1]. This, however, proves to be futile because in modern pro-
gramming and applications, buffers are used for optimization
purposes and thus reduce backwards compatibility.

It is also feasible to use memory tracking [2] to determine
when the kernel is using memory that it should not, or in-
structions that were not previously there (those from redirected
control flow attacks).

As we stated before, Linux (and namely the Linux kernel)
is written in C. Certain languages reduce as much contact
to/with the operating system as possible by abstracting the
core details, but with these abstractions comes a performance
hit - something that many programmers at this level can-

not afford to have happen. Furthermore, rewriting the entire
Linux kernel in another, safer language would be a nearly
impossible feat, so it is easier to maintain the legacy code
and patch/update the bugs as they are discovered by testers
and quality assurance. In addition, fixing one exploit may
open the door for other exploits, or even worse, a broader
classification of exploits. Chen et al. describes different kernel
designs such as Stanford’s HiStar and Minix, both derivations
of a microkernel architecture. These kernel designs attempt to
move as much information and functionality into user space as
possible, leaving minimal, direct interaction with the kernel.
Though, such implementations are few and far between with
not enough real-world experimentation [2].

V. FUTURE CONSIDERATIONS

Future work into analyzing code and ensuring the safety of
computer programs and the kernel is of utmost importance.
Nowadays with the vast array of programming languages and
paradigms out there, paired with the wide knowledge and
expertise of programmers who are aware of such risks and
vulnerabilities, problematic code ought to be kept to a mini-
mum. Legacy code is a different story, however - and instead
of rewriting an entire segment of code consisting of hundreds
of thousands of lines, it is better to investigate problematic
sections that allocate memory, work directly with buffers, or
use the safe alternatives of functions (e.g. “n” versions of
various C functions). It is interesting to see and research the
different tools and programs that walk through programs and
examine them for flaws, compared to the mundane task it is
for a human programmer.

VI. CONCLUSION

In summary, buffer overflow attacks are severe and prevalent
in today’s computing software, despite being decades old.
Operating system vulnerabilities play critical roles in tighten-
ing security since attacks at the kernel are detrimental to the
integrity of a system and its data/components. We examined
how previous research explains methods of attack, as well
as several examples of where these vulnerabilities exist in
legacy and Linux code. We further described solutions to
said bugs and attacks, particularly focusing on their detection
and prevention, rather than eliminating the threat in the act.
Computer security in operating systems is a difficult and
arduous adventure to explore, but is absolutely necessary for
both programmers, as well as everyday users, since viruses
and worms affect both parties.

Acknowledgements. : This research paper was written for
my graduate Principles of Operating Systems (CSC 662)
course at the University of North Carolina Greensboro in the
Fall 2020 semester.

REFERENCES

[1] C. Cowan, F. Wagle, Calton Pu, S. Beattie and J. Walpole, "Buffer
overflows: attacks and defenses for the vulnerability of the decade,”
Proceedings DARPA Information Survivability Conference and Exposi-
tion. DISCEX’00, Hilton Head, SC, USA, 2000, pp. 119-129 vol.2, doi:
10.1109/DISCEX.2000.821514.

[2] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zel-
dovich, and M. Frans Kaashoek. “Linux kernel vulnerabilities: state-
of-the-art defenses and open problems,” In Proceedings of the Second
Asia-Pacific Workshop on Systems (APSys ’11), Association for Com-
puting Machinery, New York, NY, USA 2011, Article 5, pp. 1-5. doi:
https://doi.org/10.1145/2103799.2103805.

[3] Michael Dalton, Hari Kannan, and Christos Kozyrakis, Real-world
buffer overflow protection for userspace & kernelspace, In Proceedings
of the 17th conference on Security symposium (SS’08), USENIX Asso-
ciation, USA, 2011, pp. 395-410.

