
1

Surveying Classic Rendering and Compression
Algorithms

L. Joshua Crotts
Department of Computer Science

University of North Carolina at Greensboro

Abstract—In this paper we analyze several practical algorithms
used for rendering computer graphics and compressing graphic
data.

Index Terms—Binary space partitioning, Quadtree, Computer
graphics, Compression

I. INTRODUCTION

W ITH the rapid advancement in processor speeds, graph-
ical horsepower, and miscellaneous algorithm improve-

ments, the need for complex and sophisticated rendering
algorithms that ensure constant peak performance on all types
of hardware slowly fades. However, the rise in games and
software with complicated geometry and models call for an
increase in either algorithm development, or expensive hard-
ware. In this research paper, we will explore several rendering
and space-partitioning algorithms that developers have used
throughout the years in various scenarios, with a particular
interest to those that work with two and three-dimensional
spaces, as well as those that compress data to reduce the initial
size and overall workload throughout processing. We will also
discuss the advantages and disadvantages to each, along with
some non-conventional, in-progress algorithms that, while not
mathematically proven, provide a great foundation for further
extending potential optimization. Special thanks to Andrew
Matzureff for his contributions to the paper, primarily focused
in non-conventional rendering methods.

II. PAINTER’S ALGORITHM

To begin, we will discuss one of the most primitive two-
dimensional rendering algorithms: Painter’s Algorithm. When
rendering a scene with overlapping geometry, it is important
to deduce what shapes are on top of others (in other words, in
what order are they drawn so the closest to the user’s perspec-
tive is on top). We refer to this as painter’s algorithm because
its process is analogous to an artist painting a landscape, where
background elements are rendered prior to any foreground
objects [6]. Using what is known as a depth layer, we can order
our polygons/shapes by their depth values (typically on a scale
from 0.0 to 1.0, with 0.0 being as close to the camera/user-
perspective as possible, and 1.0 being the farthest). Therefore,
we solve the rendering order problem.

Moreover, using graphs, we can deduce that a topological
ordering of some graph G with vertices v1.z, v2.z, ..., vn.z
representing polygons, and each z value corresponding to a
depth provides a correct rendering of the picture. Recall that

with a topological sort of node in a graph that for every
edge (u, v) ∈ E, where E is our edge set, u must come
before v in the ordering [11]. It is trivial to see the translation
from topological sort to the rendering problem with painter’s
algorithm. If, as we stated, that u is some polygon, it must
be rendered before v, if (u, v) ∈ G. A simple algorithm that
does not use a topological is as follows:

Algorithm 1 Painter’s Algorithm

Ensure: L is a list of pairs (Pn, zn), with Pn representing a
polygon and zn as its depth layer.

1: procedure PAINTER(L)
2: Sort L by zn in decreasing order. ▷ Ω(n log2 n)
3:
4: while L is not empty do
5: Render L.head()
6: L.remove(L.head())
7: end while
8: end procedure

Two prominent issues with painter’s algorithm are coping
with polygons that are cyclic overlapping, and those that
are piercing. With the standard approach, this procedure is
incapable of deciding what to do (i.e., what order to render)
in these circumstances. We will first address and construct a
polygon cutting method to deal with piercing polygons, and
introduce a concept for cyclic overlaps.

A. Polygon Cutting Algorithms

1) Sutherland-Hodgman Cutting Algorithm: Before we
dive into cutting overlapping cyclic polygons, let us introduce
the idea of polygon cutting with Sutherland-Hodgman’s cut-
ting algorithm. We start with a list of vertices V for some
convex or concave polygon P , and a polygonal object C as
the viewer. We want to clip P such that only line segments
contained in C are visible, and all others are removed. New
edges are added to accommodate any segments that were
removed during the cutting process that would invalidate P .

Let v ∈ C if and only if some vertex v is strictly contained
inside the viewer c. More importantly, (v1, v2) directs an edge
from v1 to v2 on p. As such, treating this problem as a directed
graph simplifies things. In general, there exist four properties
to cutting a polygon with this method:

1) If (v1, v2) ∈ P but (v1, v2) ̸∈ C, then do not save either
vertices v1 or v2.

2

(a) Unclipped poly-
gon P with viewer
v as the blue rect-
angle.

(b) Clipped poly-
gon inside bounds
of v.

Fig. 1: Unclipped vs Clipped Polygon Example

2) If (v1, v2) ∈ P but v1 ̸∈ c and v2 ∈ C, then create a
new vertex v′1 at the point of intersection with c, and
save both it and v2.

3) If (v1, v2) ∈ P but v1 ∈ c and v2 ̸∈ C, then create a
new vertex v′2 at the point of intersection with c, and
save both it and v1.

4) If (v1, v2) ∈ P and (v1, v2) ∈ C, then save both v1 and
v2.

We use these four properties to cut and replace edges that
leave C with vertices that end on the borders of C, so as
to restrict the edge to C’s region. The algorithm, therefore,
is straightforward. Using Algorithm 2, we compute a set of

Algorithm 2 Sutherland-Hodgman’s Cutting Algorithm

Ensure: P is a polygon with edges and vertices E and V ,
and C is a rectangular viewpoint. All edges are initially
unvisited.

1: procedure SUTHERLAND(P , C)
2: S ← {}
3: for edge e ∈ E do
4: if e.visited = True then
5: return S
6: else if e ̸∈ C then
7: S.add(v1)
8: S.add(v2)
9: else if e.v1 ∈ C and e.v2 ̸∈ C then

10: v′2 ←COMPUTEINTERSECTION(e, v)
11: S.add(v1)
12: S.add(v′2)
13: else if e.v1 ̸∈ C and e.v2 ∈ C then
14: v′1 ←COMPUTEINTERSECTION(e, v)
15: S.add(v2)
16: S.add(v′1)
17: end if e.visited = True
18: end for
19: end procedure

vertices that satisfy the previously described properties. Now,
we need to reconstruct the now-cut polygon. All we must do
is build a graph with edges from our set of saved vertices.

Algorithm 3 Build’s a Polygon Cut by Sutherland-Hodgman
Algorithm

Ensure: S is a set of vertices.
1: procedure BUILDPOLYGON(S)
2: P ← NULL
3: startEdge ← S.peekFirst()
4: while S is not empty do
5: e1 ← S.removeFirst()
6: if S is empty then
7: Add (e1, startEdge) to P.E
8: return P
9: end if

10: e2 ← S.peekFirst()
11: Add (e1, e2) to P.E
12: end while
13: end procedure

Traversing the vertices and edges in this fashion demon-
strates that the run-time of both algorithms together is O(V +
E). In the best-case, the entire polygon is outside C (which
would be pointless, but is possible), meaning the new polygon
contains no vertices. Conversely, in the worst-case, every edge
of P is inside C, so all vertices are processed.

How does this fit in with painter’s algorithm (or other
rendering methods, for that matter)? With painter’s algorithm,
recall that it fails whenever there exists cyclic overlap, or
piercing polygons. While this does not resolve the cyclic
overlap dilemma, we can remove piercing polygons as follows:
Let A and B be two polygons such that A pierces B. Using
B as the view, give all edges from A that exist inside B a
lower z-depth, so they are rendered after B.

B. Cyclic Overlap

Let A, B, and C be three polygons in our scene. If
these polygons exhibit cyclic overlap, then painter’s algorithm
cannot interpret their z-depths appropriately, and will not know
what order to render them in.

Definition 1. Cyclic Overlap: When three polygons A, B, and
C are layered in such a away that A is on top of B, B is over
top C, and C is over top A. The entire polygon is not layered
on top of another; only a specific partition (if this were the
case, this problem is trivial).

Martin and Dick Newell introduced a polygon cutting
algorithm that solves this specific problem [8], but due to
its complexity, we are going to build a simpler yet custom
algorithm. Firstly, we need to make an assumption about our
polygons: across the entire polygon, the z-depth is not the
same for any polygons that exhibit cyclic overlap. This is why,
for instance, polygon A is covered by C at certain points, and
covers B at another. We can define an algorithm to iterate
through a list of polygon L, testing each one for overlap
with another. Given that polygon A completely overlaps B at
some arbitrary point on B, split B into polygons B1, B2, B3

(respective to the pieces not covered by A, as well as the one
that is still covered).

3

Fig. 2: Three polygons that overlap in a cycle.

(a) Non-complete over-
lap.

(b) Complete overlap.

Fig. 3: Non-complete vs complete overlap.

Definition 2. Complete Overlap: If a polygon A has a section
of it where A.z.depth < A.z.depth, and any vertices that enter
B from A exit on some side of B, then A completely overlaps
B.

We will construct our algorithm on the grounds that any poly-
gon either completely overlaps another, or does not overlap
at all. For every polygon P ∈ L, if P overlaps some other
polygon Q, split Q at the overlap point into three pieces
Q1, Q2, Q3. Insert these at the rear of L, and remove Q from
the list. Continue testing until there are no discrepancies. Then,
sort all polygons by their z-depth in descending order.

III. SCAN LINE POLYGON FILL ALGORITHM

Continuing with our discussion of polygons, in a two-
dimensional (or even three dimensional) space, we need a
way of computing the color of a given polygon P . When we
call our render function on any complex polygon, we cannot
assume that the procedure nondeterministically knows how to
color geometry; rather only where to place it in our scene.
There are several algorithms for filling polygons, but we will
focus on the Scan Line Polygon Fill algorithm, predominately
for its simplistic implementation. The idea for our brute-
force approach is as such: first compute the minimum and
maximum y-coordinates of the polygon. In Figure 4, these
values are y-min, and y-max respectively. Assume this is a
typical Cartesian-coordinate plane, where the origin is located
at the bottom-left of our scene. From this, we can use a hori-
zontal vector referred to as a scan line to compute intersection
points on the polygon. In our example, these are conveniently
labeled P0, P1, P2, and P3. Iterating from y-min to y-max (the
converse also works), draw the scan line from the far-left of
the scene to the far-right, and gather all intersection points that

ymax

ymin

p0 p1 p2 p3

Fig. 4: Illustration of Scan Line Algorithm on a Convex
Polygon

lie on the boundary of our polygon. For instance, in Figure 4,
pixels between the interval (P0, P1)∪ (P2, P3) are filled with
the color of the respective polygon. Notice how we ignore the
interval (P1, P2). This is because pixels in this region are not
within the bounds of our polygon. So, during the intersection-
point collection process, P1 marks the end of a intersection set
(indicating points will no longer be “inserted” into that set),
whereas P2 marks the start of a new one.

Algorithm 4 Color a Convex or Concave Polygon

Ensure: P ’s position is defined by a previous ordering.
1: procedure COLORPOLYGON(P)
2: x-coords ← {}
3:
4: for y = P.y-min to P.y-max do
5: x-coords.add(DRAWSCANLINE(P , y))
6: end for
7: while x-coords is not empty do
8: Remove x-coords.head()
9: Color at column x-coords.y from x-coords.StartX

to
10: x-coords.EndX
11: end while
12: end procedure

One important note about this algorithm is that it is only
for demonstrative purposes; this brute-force algorithm is rarely
used in practice. In reality, basing the edges of a polygon as
vectors, testing them against the scan line, and sorting in order
of increasing x coordinate is a better alternative than the naive
method. This approach provides a consistent performance cost
across all screen resolutions and screen coverage per polygon.
With the brute-force solution, wider/bigger polygons have
more pixels to check. However, using the improved vector-
edge method increases the overall complication, and is harder
to visualize. Compared to the worse brute-force approach that
looks at all intervals, however, this is slightly faster in that
we only consider intersections that contain points inside the
polygon, and none outside. This suggests that once we have
our intersection set complete, no post-processing has to occur
(i.e., deciding whether an interval contains pixels or not).

The best approach for our algorithm is to define each

4

Algorithm 5 Draw Scan Line from Left to Right

1: W ← Scene.Width
2: H ← Scene.Height
3:
4: procedure DRAWSCANLINE(P , y)
5: InsidePolygon ← False
6: StartX ← −∞ ▷ Starting point of an intersection.
7: EndX ← −∞ ▷ Ending point of an intersection.
8: x-coordSet ← {} ▷ Pairs of intervals of intersection
9:

10: for x = 0 to W do
11: if Pixel (x, y) is on P then ▷ If p intersects P .
12: if InsidePolygon = True then ▷ End interval.
13: EndX ← x
14: x-coordSet.add((StartX , EndX)
15: InsidePolygon ← False
16: else ▷ Initialize intersection interval.
17: StartX ← x
18: InsidePolygon ← True
19: end if
20: end if
21: end for
22:
23: x-coordSet.y ← y ▷ Specify what column to color.
24: return x-coordSet
25: end procedure

canvas as one that contains strictly one polygon (and only
one polygon) to reduce the complexity of the overall problem.
Moreover, if we render more than one polygon at the same
time (i.e., contained in the same canvas), we run into the
predicament of polygon color differentiation. Note the trivial
nature of the problem if all shapes are the same color, though.

With our assumption, let H be our canvas height defined
by H = P.y-max - P.y-min. Hence, we can place a loose
lower-bound on our algorithm at Ω(WH), where W and H
are the width and height of our canvas, as aforementioned. The
simplest polygon is one that contains three sides (because it
must be enclosed by the definition of a polygon) with only two
points of intersection per iteration of the scan line (a triangle
for example). Therefore, we add one set to x-coords every
iteration, so at the end, we have 1·H , or just H pairs. However,
in the worst case, there may exist a polygon that contains n
intersection intervals per iteration (where n < W , imagine a
square with a vertical line every other pixel). As such, since
we must color in every interval, no matter how small it is, we
may end up with n ·H pairs in x-coords. Therefore, the true
upper-bound is O(W ·H·n). The run-time wildly differs based
on the type of polygon we need to render.

A. Scan Line Improvements

There are speed improvements by taking advantage of co-
herence. Often times, pixels contained in a span do not change
much, and the visibility (as well as the color) likewise vary
little from one previous scan line to the next [4]. Moreover,
as we described, it is also possible to treat each edge as a

Fig. 5: 2-D grid scene with camera v as the star.

vector, and the entire scan line as a vector from the left side
of our canvas to the right (of width W and height H = 1)
with the use of a line-intersection formula that determines the
edges that cross our scan-line (given that they exist). Again,
though, this means we will need to sort the intersection points
by increasing x coordinate, so we render these sections in the
right location and order.

Generally speaking, this is a software-rendering approach
to drawing polygons, and depending on the number and
variations of polygons in the canvas (as well as the imple-
mentation of the algorithm), it changes significantly in terms
of performance.

IV. RAY-CASTING

Ray casting is a technique introduced to allow for fast ren-
dering of a three-dimensional space from a two-dimensional
map. Not to be confused with ray-tracing, which is a rendering
algorithm used to compute real-time shadows and reflections
from a light source that is absorbed (and possibly reflected)
by other objects, ray-casting uses a grid of squares to compute
boundaries and other objects in a region. In the past, this
strategy was used by Wolfenstein and Doom, revolutionary
games developed by ID Software. Our algorithm works as
follows:

As a visual aid, Figure 5 shows a camera v with several
walls in front of its view port. Each black square represents a
wall, whereas the gray lines indicate separations for objects.
Assume that in the system, each square corresponds to a one-
bit flag, where 1 denotes a wall/object, and 0 indicates free
space. For every x in the view port of v, fire a ray from v, and
continue outwards until a wall is hit, or the edge of our scene
is reached, whichever is first. Hence, our scene s consists of a
matrix of bits. Upon firing this ray, whenever an object is hit,
compute the distance from v. Then, when drawing in the third
dimension, use this as a metric for how close or how far the
object is away from v. The smaller the number is, the higher
an object should be drawn. Conversely, the higher the number,
the lower an object is drawn to simulate depth. Defining the
subroutine SHOOTRAY is not as trivial; we have to determine
how an intersection is computed. For instance, a human is
more than capable of identifying the wall quickly, whereas
the procedure has to algorithmically decide when an object

5

Algorithm 6 Shoots a Ray Across the Viewport to Any Object
Within Sight of v

1: procedure RAYCAST(v)
2: for x = v.xMin to v.xMax do
3: SHOOTRAY(v, x)
4: end for
5: end procedure

Fig. 6: Ray that misses the wall object.

intersects the ray. The SHOOTRAY routine could, in theory,
check every coordinate the two-dimensional space between v
and an object (or the bounds of the scene), but this would be
ridiculously slow, since a boundary might be very far from v
with nothing in between, so all of those checks are useless.
Though, suppose we place a limit on how many checks are
performed, k (where k is a numerical value in pixels). Every
k “steps” in the two-dimensional scene, a point is checked.

Algorithm 7 Determines the Points of Intersection from a Ray
r

1: procedure SHOOTRAY(x, k)
2: s← k ▷ Interval for checking collisions
3: while no intersections with the ray have occurred do
4: if CHECK(x, s) then
5: return k
6: s← s+ k
7: end if
8: end while
9: return −1

10: end procedure

One glaring flaw with this approach is that it might miss
a point in the two-dimensional scene if k is too infrequent.
Moreover, a wall may be drawn at an incorrect distance from
v. As k increases, the probability that a collision is detected
decreases. Likewise, when k is lower, false negatives are less
common, but the number of computations by our algorithm
increases. A fair balance between the number of checks that
detects objects every time can be achieved by checking the
faces of any square in the two-dimensional matrix that defines
s.

Due to limitations with this type of rendering engine, only
certain types of geometry are able to be rendered: those that

Fig. 7: Ray that checks only instances where a wall might
exist.

are modellable in a two-dimensional scene of squares (or
pixels). So, the scene (when visible in the third dimension)
looks pixelated. However, for a quick pseudo-3D rendering
method is good for what it is meant for, but when comparing
to a computationally-heavy ray-tracing implementation, while
it may best it in speed, the overall quality drops significantly.

One supplemental problem solved by ray-casting is the
hidden surface problem, which we will discuss later in the
binary space partition section. Because a ray renders the first
column that it intersects with, any structures or objects that
exist behind the ray are not rendered, thus reducing computa-
tion time. In addition, there exists a problem in computational
geometry known as the Ray Shooting Problem: if provided
a d-dimensional space, construct a data structure in such a
way that if we perform “ray queries”, we quickly find any
objects that are intersected by the ray. Our trade off is that
if we preprocess the information, more storage is used, but
queries are given a performance boost. This data structure and
algorithm design goes beyond the scope of this paper.

A. Ray-Marching

A potential optimization to the primitive ray-casting algo-
rithm is known as ray-marching, where a fixed or variable-
sized step is calculated to determine where and when the
succeeding intersection check is performed. For our purposes,
we will investigate a specific variant of ray-marching known
as sphere-tracing. Upon initialization, we compute the shortest
distance from v to any arbitrary polygon P in the scene. Using
this as a radius r, we draw a circle around the viewer v, then
extend a ray out to the circumference of the circle we defined.
Repeat this process recursively, while ensuring the ray never
changes direction (i.e., it is a static vector; it cannot change
direction once it has started). Once the radius of a circle is
smaller than the threshold k, we detect a collision with a
polygon, then proceed to the next ray.

We need to define a procedure that computes the shortest
distance from a point v to every object in the scene. Let L be
the list of polygons in the scene, and assume we have defined
a mathematical function to compute the distance between one
polygon and another, f .

6

Fig. 8: Example of ray-marching algorithm using sphere
tracing.

Algorithm 8 Computes the Shortest Distance from a Point to
All Other Polygons

1: procedure SHORTESTDISTANCE(v, L)
2: min←∞
3: for polygon l in L do
4: dist← f(v, l)
5: if dist < min then
6: min← dist
7: end if
8: end for
9: return min

10: end procedure

Our ray continues until the radius of the circle it generates
is small enough to be considered a collision. Note the similar-
ities between ray-marching and ray-casting. The differences
between the two are that ray-marching guarantees that we
never pierce a polygon, and that eventually, either the ray
collides with a polygon, or it goes out of the scope of our
scene. k is a very small number, in that the closer it is to 0, the
more accurate the collision detection (at a cost of computation
time).

Algorithm 9 Uses ray-marching with a variable step to draw
one individual ray.

1: procedure SPHERETRACE(v, k, L)
2: r ←∞
3: pov ← v ▷ Re-position the viewer after each circle.
4: while r > k do
5: r ← SHORTESTDISTANCE(pov, k)
6: if r ≤ k then
7: break ▷ Upon detection, we terminate.
8: else
9: Extend ray from pov by r. ▷ Pre-determined

d.
10: pov ← pov + r
11: end if
12: end while
13: return min
14: end procedure

If there exists plentiful geometry in a scene, but a wall or
boundary is far from the viewer, then we still make several
superfluous calls to this procedure. However, for accuracy, this
subroutine works well, especially when a scene is not defined

by a grid of set bits (that determines if any arbitrary boundary
exists there or not). In using this, we completely remove false-
negatives in exchange for a prospective (slight) increase of
intersection checks. This approach does, however, outperform
checking every pixel using the brute-force approach.

V. BINARY SPACE PARTITIONING

A. BSP Trees

Similar to several tree structures, binary space partitioning
involves recursively partitioning/splitting a scene into two or
more pieces, until some arbitrary requirement is satisfied. Each
node in a BSP tree stores a split known as a hyper plane,
which defines the place at which a scene is subdivided. A
parent node a of some child node b encompasses b, along
with all of b’s children. Each time we subdivide, we ensure
that two new children nodes are added to the tree, where the
parent represents the split that instantiated those child nodes.
Children b and c of parent node a represent the placement
of some object, and are either “in front of”, or “behind” the
hyper plane described by a.

Before we continue, let us discuss the advantages of utiliz-
ing a BSP tree. Firstly, we cut down on duplicated rendering.
Recall that painter’s algorithm renders any polygons that are in
the scene, regardless of its visibility in the canvas, suggesting
that some pieces of a polygon (if not the entire polygon)
are hidden to the viewer. Thus, that rendering is unnecessary,
wasting valuable CPU time. Moreover, it does not correctly
handle the error of overlapping polygons. Lastly, there is the
required time to sort the z-indices of each polygon. BSP trees
eliminate unnecessary rendering altogether by partitioning
polygons in such a way that the redundant nature of painter’s
algorithm is removed.

Certain semantics (such as the order in which front and back
nodes are stored) for the BSP tree are up to the implementation
of the user. Furthermore, the criteria for ending the recursive
BSP calls, and the plane partition algorithm are based on the
end-goal. For our purposes, we will use the computer-graphics
approach (as opposed to back-face culling), where each scene
is subdivided until all scenes contain polygons in an order that
does not matter when rendered (for that particular scene!).

Now, let us examine how to select a root for every sub-
BSP tree. We need a way of choosing a polygon such that
when we pick a location to partition, we avoid unbalancing
the tree in one direction or the other, and fast query and look-
up operations are retained. Let us reorganize our input to be
a list of planes, defined as the edges of a polygon. Hyper
planes are line segments that span across and extend beyond a
polygon’s plane. Figure 2 illustrates this example. In previous
implementations, researchers have used “random” selection of
a polygon to be the root of the BSP tree [5], and in our
pseudo code, we will use this as our baseline. Mark de Berg
proved that a randomized algorithm (which picks the partition
at random) guarantees an upper-bound of O(n2 log2 n) [7]. If
we want to reduce the possibility of a highly-unbalanced tree,
however, we could choose the edge that is closest to the center
of our current scene. That way, on average, we get half the
edges on the left, and half our edges to the right.

7

Fig. 9: (Red) Planes, (Blue) Hyper planes of a pentagon.

To reduce the overall complexity of drawing an example,
let us draw the BSP tree for a simple scene with only wall
segments, or straight lines [12]. For this example, and the
algorithm that we will write, we assume the input is one-
dimensional polygons instead of planes (to be discussed later):

(a) Step 1 (b) Step 2

(a) Step 3 (b) Step 4

(a) Step 5 (b) Step 6

(a) Step 7 (b) Step 8

(a) Step 9

Let us walk through the generation procedure. First, we
initialize a list of polygons (or wall segments, in this case).
Now, poll the top polygon, and make it a node in the BSP tree.
We will refer to this root as r. Decide which sides represent
“front”, and “back”. In our example, the front of a plane is
denoted by the black arrow. We add all polygons that are
entirely in front of r to a list F , and all that are entirely
behind r to a list G. We define “entirely in front/behind” as
having no intersections with the hyper plane generated by r.

However, in the event that an intersection occurs (as in several
steps, but first appears in 2),the polygon is split into two new
polygons at the point of intersection, and are inserted into the
correct corresponding list. Repeat this process recursively for
both lists, and terminate when there are no remaining polygons
in the list. Keep in mind that this algorithm can and does

Algorithm 10 Builds a Binary Space Partition Tree from a
List of Polygons P

1: T ← []
2: procedure BUILDBSPTREE(P)▷ P is a list of polygons.
3: if P is empty then
4: return NIL
5: end if
6: F ← [] ▷ Polygons entirely in front of the

hyper-plane.
7: G← [] ▷ Polygons entirely behind the hyper-plane.
8: r ← P.poll() ▷ Removes the first polygon from the

list.
9: T .add(r) ▷ Add to left if in front, add to right if

behind.
10:
11: for p ∈ P do
12: if p intersects r.hyperPlane then
13: q ← p.splitAt(r.hyperPlane)
14: P .add(q)
15: else if p is entirely in front of r then
16: F .add(p)
17: else
18: G.add(p)
19: end if
20: end for
21:
22: BUILDBSPTREE(F)
23: BUILDBSPTREE(G)
24: end procedure

work with polygons that are more than one dimension (such as
lines). In order to process more complex geometry, recall how
we mentioned the idea of reducing our input from polygons
to planes, and adding those to a list. Because we have to test
every possible plane, this increases the complexity of building
the BSP tree, but reduces the complexity when traversing. Our
algorithm needs a modification to implement this behavior,
however. If a hyper plane l intersects some arbitrary plane p,
then we need to break the polygon that produces that plane
into two or more separate polygons, and add those planes to
our global list. The issue with this lies with the specific plane
chosen by the algorithm to partition at. By picking a poor
plane, we could split a polygon into many pieces, and all
of these polygons must eventually be added to the tree, thus
increasing the number of objects to render and compute [9].
Recall that BSP trees are fast for rendering three-dimensional
scenes. Let us transition to that domain now, using what we
know about BSP trees. Suppose a viewer v is placed directly
below D3 from Step 9 of the example. Using the BSP tree, we
only want to render those polygons that are visible to v. We
have another recursive traversal algorithm for this process with

8

Algorithm 11 Builds a Binary Space Partition Tree from a
List of Planes Generated by Polygons

Ensure: L is the list of planes for all polygons in the current
scene.

1: T ← []
2: procedure BUILDBSPTREE(L)
3: if L is empty then
4: return NIL
5: end if
6: F ← [] ▷ Planes entirely in front of the hyper-plane.
7: G← [] ▷ Planes entirely behind the hyper-plane.
8: r ← L.poll() ▷ Removes the first plane from the list.
9: T .add(r) ▷ Add to left if in front, add to right if

behind.
10:
11: for l ∈ L do
12: if l intersects r.hyperPlane then
13: q ← l.getPolygon().splitAt(r.hyperPlane)
14: L.add(q.planes) ▷ Adds all planes.
15: else if l is entirely in front of r then
16: F .add(l)
17: else
18: G.add(l)
19: end if
20: end for
21:
22: BUILDBSPTREE(F)
23: BUILDBSPTREE(G)
24: end procedure

Fig. 15: Yellow-star is our viewer v

increased performance over painter’s algorithm, and others
such as ray-casting due to the preprocessing work done when
building the structure. Because no polygons intersect in the
BSP tree, we do away with that limitation of painter’s algo-
rithm. We also do not have to sort the polygons at any point.
We still use a version of painter’s algorithm; just with minor
alterations to adjust it to fit the expectations of a BSP tree.
Our idea, comparable to the approach for painter’s algorithm,
is to ensure correct ordering/rendering of each node in the
BSP-tree. The following property must be satisfied: for any
node n in a BSP tree T , all nodes behind n must be rendered
prior, then n is rendered. Afterwards, all of those in front of
n are drawn, once again assuring the basic topological sort
property. One significant advantage of building the BSP tree
in this fashion (and designing the traversal algorithm as we
did) is that no matter where our viewpoint v is located, the

Algorithm 12 Traverses Through a BSP Tree to Render a 3-D
Scene.

1: procedure TRAVERSETREE(T , v) ▷ v is the current
location of the viewer object in the scene.

2: if T is empty then
3: return NIL
4: else if T.F is null and T.G is null then
5: Render T.r
6: end if
7:
8: if v is in front of T.r then
9: TRAVERSETREE(T.G, v)

10: Render T.r
11: TRAVERSETREE(T.F , v)
12: else if v is behind of T.r then
13: TRAVERSETREE(T.F , v)
14: Render T.r
15: TRAVERSETREE(T.G, v)
16: else if v is on T.r then
17: TRAVERSETREE(T.F , v)
18: TRAVERSETREE(T.G, v)
19: end if
20: end procedure

algorithm will work the same and produce the correct ordering
of objects in the scene.

Let us now trace through our example. Let mn signify some
object or node m is in front of another object or node n.
We will demonstrate a loop invariant that each node drawn
progressively approaches v (or more formally, given that every
object has a respective z-depth z, object n.z > n+1.z, where
v.z = 0). Starting at the root A, vA, so we render all children
behind A first, meaning we traverse down the left side of the
BSP tree. B1v, so render all children in front of B1, meaning
we traverse down the right path. D1 is a leaf node, so we
render it. Recursively backtrack, now render B1. Travel to C1.
C1 is a leaf node, so we render it. Recurse back up the tree to
A, and render it, since we have rendered all children behind A,
and follow the right subtree. B2v, so we investigate D2, which
is a leaf node, so we render it. Now, draw B2. Finally, traverse
all children in behind B2. vC2, hence we check all children
behind C2. Though, there are no children behind C2. Now,
render C2. Finally, check all children in front of C2, leaving
D3 which is a leaf, so it is drawn. Hence, we have completed
the BSP tree traversal. The correct ordering for this position
of v is

⟨D1, B1, C1, A, D2, B2, C2, D3⟩

Notice that our loop invariant remains true throughout itera-
tion; every element in our list is further from v than all its
successors.

Earlier, however, we mentioned that the leading purpose of
BSP trees was to remove redundant rendering, which is not
achieved in the back-to-front traversal. Using this approach
addresses the issues with the primitive painter’s algorithm, but
we need to redefine our method to render front-to-back [3].

9

A way to implement this is by using a scan-line data
structure to keep track of pixels that we have previously
rendered. Suppose we have a data structure that, as we render
nodes in our BSP tree, continuously updates a table of x-
coordinates of the nodes already drawn [4]. That way, when
deciding how to draw another object, we only draw pieces
visible to our viewer v, thus reducing the amount of an object
to draw. We will denote this data structure as a W -bit array
(where W is the width of the scene visible to v) called L. Each
bit in this array corresponds to an x-coordinate having been
rendered or not. Assume each object k in the BSP tree contains
two integers minX and maxX , marking their starting and
ending positions along the x axis in the canvas. Further assume
that x ∈ [1,W] so we avoid going out of bounds of the field
of view of v). Now, let us adjust the procedure slightly to
accommodate this change: After these alterations, we need

Algorithm 13 Render BSP Tree from Front to Back

1: L = W -bit array ▷ W is the width of the canvas.
2:
3: procedure RENDERFRONTTOBACK(T , v) ▷ v is our

viewpoint, T is our tree.
4: if T is empty or L is completely set then
5: return NIL
6: end if
7: if v is in front of T.r then
8: RENDERFRONTTOBACK(T.F , v)
9: RENDEROBJECT(T.r)

10: RENDERFRONTTOBACK(T.G, v)
11: else
12: RENDERFRONTTOBACK(T.G, v)
13: RENDEROBJECT(T.r)
14: RENDERFRONTTOBACK(T.F , v)
15: end if
16: end procedure
17:
18: procedure RENDEROBJECT(k) ▷ k is some 2D/3D

object.
19: if k.minX to k.maxX bits are set in L then
20: return []
21: end if
22: i← 1 ▷ Index offset for rendering k at a column.
23:
24: for x = k.minX to k.maxX do
25: if L[x] is not set then ▷ Only render a piece of k.
26: Sub-render k[i] at x-coordinate x
27: Flag L[x] as set.
28: end if
29: i← i+ 1
30: end for
31: end procedure

to address the assumptions made. Firstly, we created a sub-
procedure RENDEROBJECT that checks to see if the xth bit
in L is not set, and if so, we “sub-render” k and index i.
To sub-render an object means to only draw one column of
said object, instead of drawing the entire object. This does not
mean “draw the xth pixel of k”, however, because that could

go out of the bounds of the object. We define a variable i to
keep track of which specific column of pixels to render for k.
For example, if we have an object a that spans across x = 1
to x = 300, with another object b behind it spanning x = 170
to x = 670. We render a first, and set bits 1 to 300 in L. Upon
reaching b, we see that pixels 170− 300 are flagged. So, we
start rendering b at x = 301, and therefore, b[i] when i = 131.
This mechanism was introduced to ensure no confusion about
what column is rendered in which location. Moreover, line 4
provides a way to escape the recursive calls if the entire scene
has polygons, because it is unnecessary processing to continue
the walk of the tree if there is no room left for other objects.
Likewise, line 16 breaks out of the render call if there exists
no room to render one specific polygon at all, because every
x-coordinate that it encompasses is already full in L (in other
words, is taken up by another object in the canvas).

Lastly, let’s trace through this front-to-back procedure with
the example from before. Unfortunately, we have no x-
coordinates explicitly labeled, so we will make a mental note
when all objects that are visible to v are rendered.

Beginning at the root A, vA, so we render all children in
front of A first, meaning we traverse down the right side of
the BSP tree. B2v, so we traverse through the left-branch to
C2. vC2, so we reach D3. D3 is a leaf, so we render it. Back
up the tree, and we reach C2. C2 has no remaining children,
so it is rendered next. Back up the tree once again, and we get
to B2, which is rendered. Now, traverse through all children
in front of B2, in which the only one is D2, so it is rendered.
Recurse back to the root A, render it, then process all children
behind A. B1v, so we visit children behind B1, leaving us
with C1, a leaf node. It is drawn, and we return to B1 and
render it. Finally, D1 is visited and rendered. So, the complete
front-to-back ordering as as follows:

⟨D3, C2, B2, D2, A, C1, B1, D1⟩

If this looks familiar, that is because it is identical to the back-
to-front ordering, but reversed. The reason in complicating
the algorithm for a front-to-back approach is to reduce the
amount of rendering (i.e., hidden surface removal) performed
by our algorithm. And, by using our data structure to its full
potential, we can remove B2 and B1 in their entirety from
the draw calls, as D3 shadows them. Additionally, parts of A
are reduced because of C2 and D3.

In conclusion, BSP trees are great for drawing both two-
dimensional and three-dimensional scenes, but they thrive
when drawing complex three-dimensional polygons in some
given space, particularly when the amount of polygons needed
to process becomes large. However, it is dependent on the
structure and algorithms used to process and build the BSP
tree.

B. Quadtrees

In a manner that closely resembles BSP trees, we will now
turn our discussion to the data structure known as a quadtree.
Quadtrees are recursively-defined trees that have exactly zero
or four children as their respective subtrees. Typically used for

10

(0, 0)

(1, 1) (1, 2) (1, 3) (1, 4)

(a) Graphical Representation

(b) Blank “Canvas” for QuadTree

Fig. 16: One root, four-children Quadtree

two-dimensional regions/planes, we will define a region as a
square somewhere as a node in the quadtree.

Initially, the root is (geometrically/pictorially) represented
by one (presumably large) square of size n×n, where n is the
size of our initial region that encompasses the entire canvas.
Suppose we want to add an object to this space, in particular,
a pixel (point). We will further elaborate on our primitive
definition of regions; suppose each region R has a list L of
pixels, denoted as RL. Moreover, whenever we want to add a
point p to our canvas, we need to traverse through the quadtree
to find the appropriate region R(i,j) to add p to, where i is
the depth of the node, and j is a number in the range 1 to
4, representing the children. Assume we want to add p to the
canvas to an arbitrary region. We first need an algorithm to
determine if a point already exists in a region. If so, then we
must subdivide that region into four equally-sized (smaller)
regions. Let M be the root of our quadtree. Initially, there are
no points in the M (namely, |ML| = 0). As soon as we insert
more than one point p to ML, four regions are generated,
and p is placed into whichever region it is enclosed by. More
formally, whenever |ML| > 1, we recursively subdivide.

Algorithm 14 Add Points to QuadTree

1: procedure ADDPOINT(T , p)
2: if p is not inside bounds of T then
3: return []
4: else if |TL| ≤ 1 then ▷ If valid space exists in the

region.
5: TL.add(p)
6: else
7: SUBDIVIDE(T) ▷ Otherwise, subdivide.
8: T .TopLeft.add(p)
9: T .TopRight.add(p)

10: T .BottomLeft.add(p)
11: T .BottomRight.add(p)
12: end if
13: end procedure
14:
15: procedure SUBDIVIDE(T)
16: if T .Subdivided = False then
17: T.TopLeft ← new QuadTree(T .TopLeft())
18: T.TopRight ← new QuadTree(T .TopRight())
19: T.BottomLeft ← new QuadTree(T .BottomLeft())
20: T.BottomRight ← new

QuadTree(T .BottomRight())
21: T .Subdivided ← True
22: end if
23: end procedure

Definition 3. Enclosed By: Object A is enclosed by Object B
if the box-bounding rectangle that surrounds A is fully within
(inside) the rectangular box-bounds of B.

Therefore, if some p is enclosed by a region R, it is added
to RL. More specifically, in Algorithm 2, we attempt to add
the point into every newly-generated region. We do this to
determine which node in the quadtree our point p belongs
to. The run-time of this algorithm, assuming n nodes, is
Θ(log2 n).

Proof. We can derive a recurrence equation along with its
respective solution using the master theorem as follows:

T (n) = T (
n

4
) + Θ(1)

We know that a = 1, b = 4, and f(n) = Θ(1). Moreover,
Θ(nlogb a) = Θ(nlog4 1). If we take any base for a logarithm
of 1, we get 0. Thus, Θ(n0) = Θ(1). This falls under case
two of the master theorem, because f(n) = Θ(1).
Therefore,

T (n) = Θ(nlogb a · log2 n)
= Θ(nlog4 1 · log2 n)
= Θ(1 · log2 n)
= Θ(log2 n)

Figure 17 shows two images: (a) shows a quadtree with four
children, and (b) is the pictorial representation. If we added

11

(0, 0)

(1, 1) (1, 2)

(2, 1) (2, 2) (2, 3) (2, 4)

(1, 3) (1, 4)

(a) Subtree representation.

(b) Lightly-populated quadtree

Fig. 17: Quadtree with a sub-quadtree

Fig. 18: Densely-populated quadtree

a node to the top-right region, node (1, 2) would subdivide
into four extra regions. We can add as many points to the
quadtree that we desire, until we run out of space to subdivide
our plane. Namely, if our initial region, or canvas, is of size
n×n, then we can only subdivide the tree ⌊log2 n⌋ times,
assuming our pixel is of size 1, because once a region has
dimensions less than 1, no free space exists to insert new
points. We will now focus on one aspect of quadtrees when
processing images: data compression. Suppose we have an
image that shares a lot of color throughout the image in close
proximity. For instance, take the logo for the University of

Fig. 19: UNCG Spartan Logo

North Carolina at Greensboro: Using a standard, raw (no prior
compression) image file type, we can represent every pixel as
a four-byte integer, where each byte corresponds to an 8-bit
(0-255) value for translucency (or alpha), red, green, and blue
channels. Therefore, an image takes up m×n×4 bytes of data,
which can rapidly grow depending on the image. In the case
of Figure 19, however, we see that there is a lot of redundant
coloration; much of the black-pixel data could be reduced,
alongside the yellow and dark-blue. So, instead of our regions
R containing a list of points, we can denote that each region
consists of one color (and only one color). More so, if a region
has more than one color, subdivide that region untilonly one
color populates that region.

Fig. 20: Compression of the UNCG Spartan Logo

By collectively gathering all closely-related pixels (those
that are of the same color, or those that share pixel data),
we can build a quadtree where any particular leaf node corre-
sponds to a location in the canvas, in addition to the respective
color that belongs to that region. Figure 20 demonstrates
the compression capabilities for an image that is 1024x1024

12

pixels. I developed an algorithm that computes and draws the
corresponding quadtree for a supplemented image in the Java
programming language, that also provides simple statistics
about the compression data. Before compression, the image
has a raw size of 4194304 bytes. After compression (in a tree
that has depth h = 64), it is 2891392 bytes in size, which is
a 31.06% decrease in size.

Quadtree Compression Limitations

A couple of severe problems limit quadtrees in what they are
able to compress. Firstly, the image is axis-aligned, meaning
rotations are disallowed. Secondly, an image must be of
a fixed size for the compression to work correctly in the
quadtree (meaning the nodes must be square-shaped), and it is
preferable that the image be of size n×n to ensure that shape
is achieved. Moreover, the compression is slightly subjective;
in that if we shift or translate the image over by any arbitrary
number of pixels in any direction, we could produce a vastly
different tree, effectively rendering the compression random at
best, unless the conditions (and the canvas) are in the optimal
position and orientation to get an effective tree. Some possible
remedies include an algorithm that produce “blobs” of any
arbitrary shape, as opposed to solely squared ones in stagnant
locations. If this were the case, it may be feasible to create a
similar tree structure, even if alterations to the original pixel
data are present.

C. Octrees

Resembling its two-dimensional counterpart the Quadtree,
an Octree is a tree data structure that represents a three-
dimensional space, where every node has eight children in-
stead of four, corresponding to a cube. As with BSP trees,
octrees are commonly used to store objects in computer
graphics. They also serve as a nearest-neighbor data struc-
ture in logarithmic time [13]. First, some definitions on the
terminology used by an octree:

Definition 4. Region: A octant (or subdivision) in an octree.

Definition 5. Point Region: If an arbitrary region R in some
octree O has a object p somewhere within its bounds, it is
referred to as a point region These nodes are always leaf nodes
(similar to quadtree nodes).

Definition 6. Spacial Region: If an octree O is subdivided, its
root is a spacial region. Any subdivided regions (with children)
in the tree has a spacial region as the root of that subtree.

Definition 7. Empty Region: Any leaf node in the octree that
is not a point region with no subdivisions (or children) are
empty.

In the above figure, small points are scattered throughout
various regions in the three-dimensional model. The far-right
square shows the ordering in which the nodes are placed in
the tree structure from left-to-right. In the tree, green nodes
are spacial regions, red nodes are empty regions, and yellow

Fig. 21: Octree Spacial Representation with Two-Dimensional
Tree [13].

regions are the point regions. We can use octrees for quick
collision detection with an arbitrary point, nearest neighbor
queries, data organization (almost identical to the quadtree
counterpart), and others.

VI. NON-CONVENTIONAL RENDERING METHODS

Our final section begins our discussion on some non-
conventional methods of rendering objects or polygons in
a world. These methods have not been rigorously tested or
proven; they are here to demonstrate some custom approaches
to the problems that we have previously mentioned.

A. Occlusion Rendering of Polygons

Minimizing the number of draw calls made to the renderer is
of utmost priority, primarily when certain polygons or objects
are drawn unnecessarily, as depicted by painter’s algorithm.
Acceleration structures come into play with our next topic.
Suppose that we have a pseudo-three-dimensional scene as
follows:

Fig. 22: Subsequent Occluding Polygons behind our viewer v.

Where the final rendered image is

Fig. 23: Triangles rendered on top of each other.

If these polygons happen to be oriented in the render list such
that the one furthest from the viewer is at the front of the list,
it is rendered first. Afterwards, the next one in succession will
pass the z-depth test, and continues through our list until all

13

other polygons are tested and rendered, entirely unnecessarily,
as they are out of sight from the viewer. This is where the use
of a scene graph comes into play.

Definition 8. Scene Graph: A logical or spatial ordering of
objects in a scene, stored in a tree data structure.

A scene graph’s hierarchy is structured so that all parent nodes
of children affect those children throughout the rendering
process. A parent can be a process (instruction), or a node
itself.

Star

Rotate

Planet 1

Flip Moon

Planet 2

Fig. 24: Example objects where each child depends on its
parent.

In the preceding example, we render the star object first,
then apply a rotation to the canvas rendering pipeline. This
rotation affects all subsequent subtrees. So, both planets and
their children are rotated. By using this type of graph that
incorporates spatial association between geometry in the scene,
we can implement a smarter system that “understands” when
to stop rendering objects, because those behind it (or lower
in the tree) are masked from visibility. If the children of a
node are completely obscured, then we omit the draw calls
altogether. Though, we still have to test z-depths because a
child node may be only partially hidden behind several others.
For instance, suppose a is in front of three nodes, b, c, and
d. However, c is only partially covered by a. We cannot
erroneously exclude drawing this subsection of the polygon
simply because b is entirely hidden. This approach to ordering
objects has a similar methodology to what games like Doom
use alongside their BSP engines.

B. Differing Tree Structures

1) Triagonal Structure: With quadtrees, we saw that we
subdivide a square region into four smaller squared regions
within the parent. Our question is what if instead of using a
square, we decide to use a different shape overall? Imagine
a world defined by a Sierpinski triangle, where all “tiles” are
triangular. Our initial triangle looks like

With one and two recursive subdivisions respectively, we
get

The hierarchy is similar in that we can define detail in
the scene, then have the graph recursively subdivide in those

Fig. 25: Initial step of the recursive triangle.

Fig. 26: One and two subdivisions of Sierpinski triangle..

specific portions. Unfortunately, we discovered one immediate
drawback to this idea: there exists “dead zones” in our
division.

Definition 9. Dead zone: Any region in a geometric represen-
tation that cannot be further subdivided.

Though, for this example in particular, notice that the largest
red triangle is identical to the top triangle, just mirrored. All
we need to do for a workaround is to geometrically align and
mirror the fully-red triangle with the counterpart node above it,
and no dead zones are to be found. Dealing with the geometry
in this type of tree structure, however, is less intuitive because
the geometry from the node that was formerly a dead zone
is now a habitable subdivision by some object or detail, and
must be treated differently from the other three, as it is not a
natural subdivision created by our recursive subroutine. This
problem is reducible from the quadtree problem, in that we
still work with four nodes at a time, just where one is treated
differently.

One benefit that branches from this ideology is that if our
scene is defined with triangular-regions in mind, we can use
a modified quadtree to accommodate this shape and structure.

Fig. 27: Initial step of the recursive triangle.

14

Fig. 28: Mirroring the triangle above our dead-zone fixes the
issue.

Oppositely, if our scene resembles what we have previously
worked with, this structure does not save or facilitate the
compression or rendering process.

C. Parallel Rendering

We will briefly mention the concept of parallel rendering.
Up until now, we have viewed space partitioning and rendering
algorithms that are not parallel. As we have seen, rendering
geometry and data to a screen is computationally expensive,
and because of that, researchers have investigated methods
to distribute the workload of the render problem across pro-
cessors. In general, there are two processes in the typical
graphics pipeline: geometric transformation, and rasterization.
When we parallelize geometric transformation, each processor
P is given a region R of polygons to transform. With the
parallelization of rasterization each processor is given a set of
pixels to manage.

We have seen that the purpose of a rendering pipeline is to
determine what happens at any arbitrary pixel p in some scene
s. This idea is reducible to sorting geometric polygons. In
computer graphics, we can classify three sorting stages: sort-
first, sort-middle, and sort-last. Each sort procedure defines
how processes are distributed, as well as the overarching
render pipeline structure. Sort-first is focused on distributing
the polygons that we have in our list to the geometric transfor-
mation processors. In general, this is achieved by subdividing
a scene into regions, such that each processor in the geometric
transformation process is responsible for any polygons in the
bounds of that particular region. Sort-middle uses polygons
that are pre-converted into their geometric counterparts, but
are not yet in the rasterization step. During each frame, the ge-
ometric processors will perform any necessary transformations
on the polygons assigned to it, then pass the modified data long
to the appropriate rasterizer. Lastly, a sort-last approach waits
until after rasterization to perform any sorting. All renderers
are, similar to their geometric processor counterparts, assigned
a subset of pixels to manage. The renderers pass along the
information to a composition algorithm, which solves the
visibility problem of every pixel in the scene [10].

For complex scenes that are high-definition, video games,
or software that works with real-time graphics, the importance
of parallel rendering is apparent, peculiarly when said scenes
transform overtime or contain non-static objects.

VII. CONCLUSION

In essence, we have discussed and reviewed different re-
searchers’ approaches to solving problems in computer graph-
ics, including potential optimizations. Some non-conventional,
experimental methods were shown, alongside parallel ren-
dering procedures to reduce the workload placed on one
processor, across a network of them. Future work and research
is dedicated to improving performance in scenes that change
overtime, and those that contain hundreds of polygons or
objects. A focus on compression is also a pertinent issue,
because as the quality of scenes improves, and the number
of complex objects storable in a scene increases, the required
data capacity and processing power likewise rise.

Acknowledgements. : This research paper was written for
my graduate Algorithm Analysis and Design (CSC 654) course
at the University of North Carolina Greensboro in the Spring
2020 semester.

REFERENCES

[1] Andrew E. Matzureff. 2020. Personal communication.
[2] Csaba Bálint and Gábor Valasek. 2018. Interactive Rendering Frame-

work for Distance Function Representations. Annales Mathematicae et
Informaticae. 48. 5-13.

[3] Dan Gordon and Shuhong Chen. 1991. Front-to-Back Display of BSP
Trees. IEEE Computer Graphics and Applications. 11. 79 - 85. DOI:
https://doi.org/10.1109/38.90569

[4] David S. Ebert. 2000. Region Filling. University of Maryland, MD.
Retrieved from https://www.csee.umbc.edu/∼ebert/435/notes/435\ ch5.
html

[5] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. 1980. On visible
surface generation by a priori tree structures. In Proceedings of the
7th annual conference on Computer graphics and interactive techniques
(SIGGRAPH ’80). Association for Computing Machinery, New York,
NY, USA, 124–133. DOI: https://doi.org/10.1145/800250.807481

[6] Mark de Berg. 1993. Ray Shooting, Depth Orders and Hidden Surface
Removal. Springer-Verlag. Heidelberg, Berlin.

[7] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
2008. Computational Geometry: Algorithms and Applications (3rd. ed.).
Springer-Verlag TELOS, Santa Clara, CA, USA.

[8] Martin Newell, Richard “Dick” Newell, and Tom Sancha. 1972. A
solution to the hidden surface problem. In Proceedings of the ACM
annual conference - Volume 1 (ACM ’72). Association for Computing
Machinery, New York, NY, USA, 443-450. DOI: https://doi.org/10.1145/
800193.569954

[9] Navendu Jain, Sorav Bansal, and Sanjiv Kapoor. 2000. Efficient Object
BSP Trees. Indian Conference on Computer Graphics, Vision and Image
Processing (ICVGIP ’00).

[10] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. 1994.
A Sorting Classification of Parallel Rendering. IEEE Comput. Graph.
Appl. 14, 4 (July 1994), 23–32. DOI: https://doi.org/10.1109/38.291528

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2009. Introduction to Algorithms (3rd. ed.). The MIT Press.
Cambridge, MA, USA.

[12] Wikipedia. 2012. Wikipedia: the Free Encyclopedia. Retrieved from
https://www.wikipedia.org/These images are licensed under a Cre-
ative Common License: https://creativecommons.org/ licenses/by-sa/3.
0/deed.en

[13] Yash Aggarwal. 2019. Octree data structure. Retrieved from https://iq.
opengenus.org/octree/

