
C212 Practice Final Exam (150 points)
Dec 11/13, 2023

Please read these directions before starting your exam.

This is a closed-note exam aside from your one page of notes, double-sided. You may not
use any electronic devices to complete this exam, nor can you communicate with anyone
besides the proctors and professor. If you are caught cheating, you will receive an F in the
course.

For any question, unless specified otherwise, you may use any class without a corre-
sponding import. E.g., if you want to use HashMap, you do not need to also import
java.util.HashMap.

Unless otherwise stated, you do not need to spell out the “full design recipe”, i.e., write
the signature, documentation comments, and tests. Of course, doing so may aid you in
your solution.

If you find a mistake, please raise your hand and let one of the proctors know; we will
determine whether or not this is the case.

When you are finished, turn in your exam and notes sheet if you have one, then quietly exit.

You have 120 minutes to complete the exam.

Good luck!

Question Points Score

1 60

2 30

3 20

4 20

5 20

Total: 150

Name:

IU Email:

C212 Practice Final Exam Page 2 of 17

1. (60 points) Files on a computer are organized into directories, which are just locations for
files to exist. Namely, directories can be nested inside of other directories. Therefore, we can
categorize a directory as a data definition.

A Directory is one of:

- File

- new List<Directory>

We must then define a File as well, which contains two values: a name and a size (in bytes).

A File is a new File(String, Integer)

A directory that contains no files will have an empty list of subdirectories. We need a way of
labeling that File and Directory are related, so we will define the IContent interface, which
contains two methods to denote whether something is a file or a directory.

interface IContent {

/**

* Determines whether or not the implementing class is a File.

*/

boolean isFile();

/**

* Determines whether or not the implementing class is a Directory.

*/

boolean isDirectory();

}

(a) (10 points) Design the Directory class, which implements IContent, and stores, as an
instance variable, a List<IContent>. Then, design the File class, which also implements
IContent and stores the two relevant instance variables as described above. Of course,
this means you will need to override the isFile and isDirectory methods respectively.
Write your code on the next page.

C212 Practice Final Exam Page 3 of 17

class Directory {

}

class File {

}

C212 Practice Final Exam Page 4 of 17

(b) (4 points) Design the void add(IContent c) method inside Directory, which receive a
File/Directory and adds it to the list of content.

(c) (6 points) Implement the Comparable interface for File that returns a comparison of the
file names. Remember that a class can implement multiple interfaces!

C212 Practice Final Exam Page 5 of 17

(d) (8 points) Design the boolean isPresent(File f) method inside Directory, which de-
termines whether or not a file f exists inside the directory instance.

(e) (8 points) Design the int countFiles() method inside Directory, which returns the
number of files that exist in that directory. It might make sense to write a recursive
helper method to solve this problem.

C212 Practice Final Exam Page 6 of 17

(f) (8 points) Design the int countDirectories() method inside Directory, which returns
the number of directories that exist in that directory. Do not include the directory itself
in this total.

(g) (6 points) Design the boolean isEmpty()method inside Directory, which returns whether
or not the directory contains any content.

C212 Practice Final Exam Page 7 of 17

(h) (10 points) Write coherent tests for your Directory and File classes. In particular,
you should test the following methods: isPresent, countFiles, countDirectories, and
isEmpty. It might make sense to create a couple of directories outside each test method,
then test them inside those methods.

import static Assertions.assertAll;

import static Assertions.assertEquals;

class DirectoryTester {

@Test

void dirIsPresentTest() {

}

@Test

void dirCountFilesTest() {

}

@Test

void dirCountDirectoriesTest() {

}

@Test

void dirIsEmptyTest() {

}

}

C212 Practice Final Exam Page 8 of 17

2. (30 points) This question has five parts.

(a) (6 points) First, write the boolean isVowel(char ch) method, which returns whether
or not the character ch is a vowel.

isVowel(‘A’) => true

isVowel(‘a’) => true

isVowel(‘X’) => false

isVowel(‘?’) => false

(b) (6 points) Next, write the char swapVowelCasing(char ch) method, which receives a
character and, if it is a vowel, we swap its casing. That is, if it is uppercase, it be-
comes lowercase, and vice versa. Leave non-vowels alone. The Character.toUpperCase,
Character.toLowerCase, isUpperCase, and isLowerCase methods will be helpful.

swapVowelCasing(‘a’) => ‘A’

swapVowelCasing(‘A’) => ‘a’

swapVowelCasing(‘b’) => ‘b’

swapVowelCasing(‘?’) => ‘?’

C212 Practice Final Exam Page 9 of 17

(c) (6 points) Design the standard recursive String swapVowelCasingString(String s)

method, which receives a string and swaps the casing of the vowels thereof.

(d) (6 points) Design the String swapVowelCasingStringTR(String s) as well as the String
swapVowelCasingStringTRHelper(...) methods. The former acts as the driver to the
latter; the latter solves the same problem that swapVowelCasingString does, but it in-
stead uses tail recursion. Remember to include the relevant access modifiers!

C212 Practice Final Exam Page 10 of 17

(e) (6 points) Design the String swapVowelCasingStringLoop(String s) method, which
solves the problem using either a while or for loop.

C212 Practice Final Exam Page 11 of 17

3. (20 points) We consider a key string to be the string obtained after alphabetizing the letters of a
string. For example, the string "deloop" is a key string of the strings "poodle" and "looped".
Write the static HashMap<String, List<String>> keyStringGroups(List<String> ls)

method, which maps all key strings to the strings in ls using the above criteria. We provide an
example below. You cannot use this example in your tests.

ls = ["ant", "introduces", "poodle", "tan", "looped", "discounter", "nastier",

"polled", "retains", "retinas", "reductions"]

keyStringGroups(ls) => {{"ant", ["tan", "ant"]},

{"deloop", ["poodle", "looped"]},

{"dellop", ["polled"]},

{"cdeinorsu", ["discounter", "introduces", "reductions"]},

{"aeinrst", ["retains", "retinas", "nastier"]}}

import static Assertions.assertAll;

import static Assertions.assertEquals;

class KeyStringGroupTester {

@Test

void testKeyStringGroup() {

}

}

C212 Practice Final Exam Page 12 of 17

import java.util.*; // Import all necessary collections.

class KeyStringGroup {

/**

*

*

*

*/

static HashMap<String, List<String>> keyStringGroups(List<String> ls) {

}

}

C212 Practice Final Exam Page 13 of 17

4. (20 points) Two strings s1 and s2 are isomorphic if we can create a mapping from s1 from
s2. For example, the strings "DCBA" and "ZYXW" are isomorphic because we can map D to
Z, C to Y , and so forth. Another example is "ABACAB" and "XYXZXY" for similar reasons. A
non-example is "PROXY" and "ALPHA", because once we map "A" to "P", we cannot create a
map between "A" and "Y". Write the isIsomorphic method, which determines whether or
not two strings are isomorphic. Follow the design recipe from class. That is, write the purpose
statement, followed by a sequence of examples, then the definition. The skeleton code is on
the next page.

C212 Practice Final Exam Page 14 of 17

import static Assertions.assertAll;

import static Assertions.assertEquals;

class IsomorphicStringTester {

@Test

void isomorphicStringTest() {

}

}

import java.util.*; // Import all necessary collections.

class IsomorphicString {

/**

*

*

*

*/

static boolean isIsomorphic(String s1, String s2) {

}

}

C212 Practice Final Exam Page 15 of 17

5. (20 points) Oh no! Joshua’s cat, Nebraska, has scratched part of this exam away and we need
you to fix the missing code. Fill in the missing code for this merge sort implementation. Note
that this is a in-place implementation of the merge sort, meaning that we modify the list in-
place, rather than returning a new one. Only the mergeSort and merge methods should be
filled in.

import java.util.List;

interface IMergeSort<____________________> {

List<___> mergeSort(List<___> ls);

}

class InPlaceMergeSort<___ extends Comparable<___>> implements IMergeSort<___> {

private void mergeSortHelper(List<___> ls, int low, int high) {

if (low < high) {

int mid = ______________________;

mergeSortHelper(ls, ________, ________);

mergeSortHelper(ls, ________, ________);

merge(ls, low, mid, high);

}

}

private void merge(List<___> ls, int low, int mid, int high) {

List<___> left = new ArrayList<>();

List<___> right = new ArrayList<>();

for (int i = low; i <= mid; i++) { ______________________________; }

for (int j = mid + 1; j <= high; j++) { ______________________________; }

int mergedIdx = _________;

int i = 0;

int j = 0;

while (__) {

if (left.get(i).compareTo(right.get(j)) < 0) {

ls.set(mergedIdx++, ____________________);

} else {

ls.set(mergedIdx++, ____________________); }

}

while (______________________) { ls.set(mergedIdx++, left.get(i++)); }

while (______________________) { ls.set(mergedIdx++, right.get(j++)); }

}

}

C212 Practice Final Exam Page 16 of 17

Scratch work

C212 Practice Final Exam Page 17 of 17

Scratch work

