
C212 Midterm Exam (80 points)
Oct 11, 2023

Please read these directions before starting your exam.

This is a closed-note exam aside from your one page of notes, double-sided. You may not
use any electronic devices to complete this exam, nor can you communicate with anyone
besides the proctors and professor. If you are caught cheating, you will receive an F in the
course.

For any question, unless specified otherwise, you may use any class without a corre-
sponding import. E.g., if you want to use HashMap, you do not need to also import
java.util.HashMap.

Unless otherwise stated, you do not need to spell out the “full design recipe”, i.e., write
the signature, documentation comments, and tests. Of course, doing so may aid you in
your solution.

If you find a mistake, please raise your hand and let one of the proctors know; we will
determine whether or not this is the case.

When you are finished, turn in your exam and notes sheet if you have one, then quietly exit.

You have 75 minutes to complete the exam, but it is designed to take only 60 minutes.

Good luck!

Question Points Score

1 20

2 20

3 20

4 20

Total: 80

Name:

IU Email:

Section (Sam/Joshua):

C212 Midterm Exam Page 2 of 9

1. (20 points) Design the computeDiscount(double itemCost, int age, boolean isStudent)

method that computes a discount for some item based on their age and student status according
to the following criteria:

• If age < 18, apply a 20% discount.

• If 18 ≤ age ≤ 25 and they are a student, apply a 25% discount. If they are not a student,
do not apply a discount.

• If age ≥ 65 and they are a student, apply a 30% discount. If they are not a student, apply
a 15% discount.

• All other cases should not have a discount applied.

Your method should return the total cost of the item after applying the discount. In designing
this method, follow the template from class; write the signature, purpose statement, testing,
and then do the implementation. You should probably use simple numbers for the itemCost

so you can calculate the discounts in your head. The skeleton code is on the next page.

C212 Midterm Exam Page 3 of 9

import static Assertions.assertAll;

import static Assertions.assertEquals;

class ComputeDiscountTester {

@Test

void computeDiscountTest() {

}

}

class ComputeDiscount {

/**

*

*

*

*

*/

_________ _________ computeDiscount(double itemCost, int age, boolean isStudent) {

}

}

C212 Midterm Exam Page 4 of 9

2. (20 points) This question has three parts.

(a) (6 points) Design the standard recursive countdown method, which receives an int n ≥
0 and returns a String containing a sequence of the even numbers from n down to 0
inclusive, separated by commas.

countdown(10) => "10,8,6,4,2,0"

countdown(23) => "22,20,18,16,14,12,10,8,6,4,2,0"

countdown(0) => "0"

(b) (7 points) Design the countdownTR and countdownTRHelper methods. The former acts
as the driver to the latter; the latter solves the same problem as countdown does, but it
instead uses tail recursion. Remember to include the relevant access modifiers!

C212 Midterm Exam Page 5 of 9

(c) (7 points) Design the countdownLoop method, which solves the problem using either a
while or for loop.

C212 Midterm Exam Page 6 of 9

3. (20 points) Design the moreThanThree method that, when given an int[] A, returns a new
HashSet<Integer> of values containing those values from A that occur strictly more than three
times. You cannot use the Stream API. In designing this method, follow the template
from class; write the signature, purpose statement, testing, and then do the implementation.

import static Assertions.assertAll;

import static Assertions.assertEquals;

class MoreThanThreeTester {

@Test

void moreThanThreeTest() {

}

}

import java.util.*; // Import all necessary collections.

class MoreThanThree {

/**

*

*

*/

____________ ___________________ moreThanThree(__________ __________) {

}

}

C212 Midterm Exam Page 7 of 9

4. (20 points) Oh no! Sam’s cat, Marmalade, has scratched part of this exam away and we need
you to fix the missing code. Fill in the blanks to complete this generic method implementation.
Additionally, write at least two examples where each example uses a different key type. You
can write an instance of a LinkedHashMap as {<k1, v1>, <k2, v2>, ..., <kn, vn>} in your
examples to compensate for time.

import static Assertions.assertAll;

import static Assertions.assertEquals;

class FindMaxStringTester {

@Test

void findMaxStringTest() {

}

}

import java.util.LinkedHashMap;

class FindMaxString {

/**

* Finds the maximum string in a map of some keys

* of an arbitrary type to strings.

*/

static _________ ____ findMaxString(LinkedHashMap<_____, String> map) {

String max = "";

for (____ t : map.keySet()) {

if (__) {

max = map.get(_____);

}

}

return max;

}

}

C212 Midterm Exam Page 8 of 9

Scratch work

C212 Midterm Exam Page 9 of 9

Scratch work

