
C212 Final Exam (130 points)
December 2023

Please read these directions before starting your exam.

This is a closed-note exam aside from your one page of notes, double-sided. You may not
use any electronic devices to complete this exam, nor can you communicate with anyone
besides the proctors and professor. If you are caught cheating, you will receive an F in the
course.

For any question, unless specified otherwise, you may use any class without a corre-
sponding import. E.g., if you want to use HashMap, you do not need to also import
java.util.HashMap.

Unless otherwise stated, you do not need to spell out the “full design recipe”, i.e., write
the signature, documentation comments, and tests. Of course, doing so may aid you in
your solution.

If you find a mistake, please raise your hand and let one of the proctors know; we will
determine whether or not this is the case.

When you are finished, turn in your exam and notes sheet if you have one, then quietly exit.

You have 120 minutes to complete the exam.

Good luck!

Question Points Score

1 60

2 30

3 20

4 20

Total: 130

Name:

IU Email:

C212 Final Exam Page 2 of 15

1. (60 points) In functional programming languages, we often use three operations to act on data
structures akin to linked lists: cons, first, and rest. In this question, you will implement a
cons-like data structure, since Java has no real equivalent.

We can define a cons list as follows:

A ICons is one of:

- EmptyConsList

- new ConsList(x, ICons)

We need a way of linking these two types together, i.e., EmptyConsList and ConsList. So, we
will design an interface ICons<T> to hook the two together.

interface ICons<T extends Comparable<T>> extends Comparable<ICons<T>> {

/**

* Retrieves the first element of the list.

*/

T getFirst();

/**

* Retrieves the rest of the list, i.e., the list without

* the first element.

*/

ICons<T> getRest();

/**

* Determines whether this list is the empty list.

*/

boolean isEmpty();

}

C212 Final Exam Page 3 of 15

(a) (10 points) Design the ConsList<T> class and the EmptyConsList<T> classes. Both classes
should implement the ICons<T> interface. The former should store two variables: an
element of type T, and a ICons<T> representing the rest of the list. The latter should
store no instance variables. Do not override/implement the methods defined inside
ICons<T> yet—we will do that in subsequent steps.

class ConsList<T extends Comparable<T>> _________________________ {

}

class EmptyConsList<T extends Comparable<T>> _________________________ {

}

(b) (5 points) Design a private constructor for ConsList. It should receive the first and
rest arguments, and assign them to the respective instance variables.

(c) (3 points) Design the public constructor for EmptyConsList.

C212 Final Exam Page 4 of 15

(d) (5 points) Inside ConsList, override the getFirst, getRest, and isEmptymethods, which
retrieve the respective parts of the list, and determine if the list is empty respectively.

(e) (5 points) Inside EmptyConsList, override the getFirst and getRest methods, wherein
each method throws an IllegalOperationException, since accessing the parts of an
empty list is nonsensical. Then, override isEmpty as appropriate.

C212 Final Exam Page 5 of 15

(f) (7 points) Inside ConsList, write the setFirst and setRest methods, which respectively
mutate the given list instance variables.

(g) (7 points) Inside ConsList, write the static ConsList<T> cons(T first, ICons<T>

rest) method, which invokes the private constructor and returns a new cons list.

C212 Final Exam Page 6 of 15

(h) (8 points) We see that ICons extends Comparable<ICons<T>>, meaning that it has to pro-
vide a definition of compareTo. Override compareTo in both ConsList and EmptyConsList
to compare the elements of a cons list. If, in ConsList, the argument is not a ConsList,
return 1.

C212 Final Exam Page 7 of 15

(i) (10 points) Write coherent tests for your ICons<T> data structure. In particular, you
should test the following methods: getFirst, rest, setFirst, setRest, and isEmpty.
It might make sense to create a couple of lists outside each test method, then test them
inside those methods.

import static Assertions.assertAll;

import static Assertions.assertEquals;

class ConsListTester {

@Test

void consListGetFirstTest() {

}

@Test

void consListGetRestTest() {

}

@Test

void consListSetFirstTest() {

}

@Test

void consListSetRestTest() {

}

@Test

void consListIsEmptyTest() {

}

}

C212 Final Exam Page 8 of 15

2. (30 points) This question has five parts. We need to provide some background for the question
first. An encoded string S is one of the form:

S = n[S′]

S′ = SS′ | [a, ..., z]∗ | ""

We imagine this didn’t clear up what the definition means. Take the encoded string "3[a]2[b]"
as an example. The resulting decoded string is "aaabb", because we create three copies of
"a", followed by two copies of "b". Another example is "4[abcd]", which returns the string
containing "abcdabcdabcdabcd".

(a) (6 points) First, write a method retrieveN that returns the integer at the start of an en-
coded string. Take the following examples as motivation. Hint: use indexOf, substring,
and Integer.parseInt.

retrieveN("3[a]2[b]") => 3

retrieveN("47[abcd]") => 47

retrieveN("1[bbbbb]3[a]") => 1

(b) (6 points) Next, write the cutN that returns a string without the integer at the start of
an encoded string. Hint: use indexOf and substring.

cutN("3[a]2[b]") => "[a]2[b]

cutN("47[abcd]") => "[abcd]"

cutN("1[bbbbb]3[a]") => "[bbbbb]3[a]"

C212 Final Exam Page 9 of 15

(c) (6 points) Design the standard recursive decode method, which receives an encoded string
and performs a decoding operation. Hint: use s.repeat(n), which receives an integer n
and operates on a string s, returning a new string with n copies of s.

(d) (6 points) Design the decodeTR and decodeTRHelper methods. The former acts as the
driver to the latter; the latter solves the same problem that decode does, but it instead uses
tail recursion. Remember to include the relevant access modifiers! Hint: use s.repeat(n).

C212 Final Exam Page 10 of 15

(e) (6 points) Design the decodeLoop method, which solves the problem using either a while

or for loop. Hint: use s.repeat(n).

C212 Final Exam Page 11 of 15

3. (20 points) The substitution cipher is a text cipher that encodes an alphabet string A (also
called the plain-text alphabet) with a key string K (also called the cipher-text alphabet). The
A string is defined as "ABCDEFGHIJKLMNOPQRSTUVWXYZ", and K is any permutation of A.
We can encode a string s using K as a mapping from A. For example, if K is the string
"ZEBRASCDFGHIJKLMNOPQTUVWXY" and s is "FLEE AT ONCE. WE ARE DISCOVERED!", the result
of encoding s produces "SIAA ZQ LKBA. VA ZOA RFPBLUAOAR!"

Design the subtitutionCiphermethod, which receives a plain-text alphabet string A, a cipher-
text string K, and a string s to encode, substitutionCipher should return a string s′ using
the aforementioned substitution cipher algorithm. You must follow the “design recipe” laid
out in class. That is, you must write the method purpose statement comment, tests, and the
implementation.

The skeleton code is on the next page.

C212 Final Exam Page 12 of 15

import static Assertions.assertAll;

import static Assertions.assertEquals;

class SubstitutionCipherTester {

@Test

void substitutionCipherTest() {

}

}

import java.util.*; // Import all necessary collections.

class SubstitutionCipher {

/**

*

*

*

*/

static String substitutionCipher(String A, String K, String s) {

}

}

C212 Final Exam Page 13 of 15

4. (20 points) Oh no! Joshua’s cat, Butterscotch, has scratched part of this exam away and we
need you to fix the missing code. Fill in the missing code for this quick sort implementation.
Note that this is a functional implementation of the quick sort, which means that we return a
new array rather than sorting the one we provide.

import java.util.List;

interface IQuickSort<____________________> {

List<___> quicksort(List<___> ls);

}

class FunctionalQuickSort implements _______________ {

@Override

public List<___> quicksort(List<___> A) {

if (A.isEmpty()) { return ____; }

else {

// Choose a random pivot.

___ pivot = new Random().nextInt(_________________________);

// Sort the left-half.

List<___> leftHalf = A.stream()

.filter(x -> _____________)

.collect(Collectors.toList());

List<___> leftSorted = ____________________;

// Sort the right-half.

List<___> rightHalf = A.stream()

.filter(x -> _____________)

.collect(Collectors.toList());

List<___> rightSorted = _____________________________;

// Get all elements equal to the pivot.

List<___> equal = A.stream()

.filter(x -> _____________)

.collect(Collectors.toList());

// Merge the three.

leftSorted.addAll(equal);

leftSorted.addAll(rightSorted);

return leftSorted;

}

}

}

C212 Final Exam Page 14 of 15

Scratch work

C212 Final Exam Page 15 of 15

Scratch work

