
Indiana University
CSCI-C212: Introduction to Software Systems (SP24)
Joshua Crotts & Muazzam Siddiqui

Assignment 5
March 27, 2024

Interfaces, Inheritance, Exceptions, File I/O

Important Dates:

• Assigned: March 27, 2024

• Deadline: April 17, 2024 at 11:59 PM EST

Objectives:

• Students become familiar with inheritance through lazy lists.

• Students understand the hierarchy imposed by interfaces and how they relate to storing
instances of different subclasses in a collection.

• Students employ polymorphic method design to solve a problem.

• Students design a real-world data structure example through arbitrarily-large natural numbers.

• Students work with simple file I/O and exception handling to parse strings and numbers.

What To Do:

Design classes with the given specification in each problem, along with the appropriate test suite.
Do not round your solutions!
You must write sufficient tests and adequate documentation.



Assignment 5: Interfaces, Inheritance, Exceptions, File I/O 2

Problem 1

A lazy list is one that, in theory, produces infinite results! Consider the ILazyList interface below:
interface ILazyList<T> {

T next();
}

When calling next on a lazy list, we update the contents of the lazy list and return the next
result. We mark this as a generic interface to allow for any desired return type. For instance, below
is a lazy list that produces factorial values:1
class FactorialLazyList implements ILazyList<Integer> {

private int n;
private int fact;

FactorialLazyList() {
this.n = 1;
this.fact = 1;

}

@Override
public int next() {

this.fact *= this.n;
this.n++;
return this.fact;

}
}

Testing it with ten calls to next yields predictable results.
import static Assertions.assertAll;
import static Assertions.assertEquals;

class FactorialLazyListTester {

@Test
void testFactorialLazyList() {

ILazyList<Integer> FS = new FactorialLazyList();
assertAll(

() -> assertEquals(1, FS.next()),
() -> assertEquals(2, FS.next()),
() -> assertEquals(6, FS.next()),
() -> assertEquals(24, FS.next()),
() -> assertEquals(120, FS.next()),

1We will ignore the intricacies that come with Java’s implementation of the int datatype. To make this truly
infinite, we could use BigInteger.



Assignment 5: Interfaces, Inheritance, Exceptions, File I/O 3

() -> assertEquals(720, FS.next()),
() -> assertEquals(5040, FS.next()),
() -> assertEquals(40320, FS.next()),
() -> assertEquals(362880, FS.next()),
() -> assertEquals(3628800, FS.next()));

}
}

Design the FibonacciLazyList class, which implements ILazyList<Integer> and cor-
rectly overrides next to produce Fibonacci sequence values. You code should not use any loops
or recursion. Recall that the Fibonacci sequence is defined as 𝑓 (𝑛) = 𝑓 (𝑛 − 1) + 𝑓 (𝑛 − 2) for all
𝑛 ≥ 2. The base cases are 𝑓 (0) = 0 and 𝑓 (1) = 1.
import static Assertions.assertAll;
import static Assertions.assertEquals;

class FibonacciLazyListTester {

@Test
void testFibonacciLazyList() {

ILazyList<Integer> FS = new FibonacciLazyList();
assertAll(

() -> assertEquals(0, FS.next()),
() -> assertEquals(1, FS.next()),
() -> assertEquals(1, FS.next()),
() -> assertEquals(2, FS.next()),
() -> assertEquals(3, FS.next()),
() -> assertEquals(5, FS.next()),
() -> assertEquals(8, FS.next()),
() -> assertEquals(13, FS.next()),
() -> assertEquals(21, FS.next()),
() -> assertEquals(34, FS.next()));

}
}



Assignment 5: Interfaces, Inheritance, Exceptions, File I/O 4

Problem 2

Design the LazyListTake class. It should receive an ILazyList and an integer 𝑛 denoting how
many elements to take, as parameters. Then, write a List<T> getList() method, which returns
a List<T> of 𝑛 elements from the given lazy list.
import static Assertions.assertAll;
import static Assertions.assertEquals;

class LazyListTakeTester {

@Test
void testLazyListTake() {
LazyListTake llt1 = new LazyListTake(new FactorialLazyList(), 10);
LazyListTake llt2 = new LazyListTake(new FibonacciLazyList(), 10);

assertAll(
() -> assertEquals("[1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]",

llt1.getList().toString()),
() -> assertEquals("[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]",

llt2.getList().toString()));
}

}



Assignment 5: Interfaces, Inheritance, Exceptions, File I/O 5

Problem 3

Java’s functional API allows us to pass lambda expressions as arguments to other methods, as well
as method references (as we saw in Chapter 5). Design the generic FunctionalLazyList class to
implement ILazyList, whose constructor receives a unary function Function<I, R> f and an
initial value T t. Then, override the next method to invoke 𝑓 on the current element of the lazy
list and return the previous. For example, the following test case shows the expected results when
creating a lazy list of infinite positive multiples of three.
import static Assertions.assertEquals;
import static Assertions.assertAll;

class FunctionalLazyListTester {

@Test
void testMultiplesOfThreeLazyList() {

ILazyList<Integer> mtll = new FunctionalLazyList<>(x -> x + 3, 0);
assertAll(

() -> assertEquals(0, mtll.next()),
() -> assertEquals(3, mtll.next()),
() -> assertEquals(6, mtll.next()),
() -> assertEquals(9, mtll.next()),
() -> assertEquals(12, mtll.next()));

}
}

What’s awesome about this exercise is that it allows us to define the elements of the lazy list
as any arbitrary lambda expression, meaning that we could redefine FactorialLazyList and
FibonacciLazyList in terms of FunctionLazyList. We can generate infinitely many ones,
squares, triples, or whatever else we desire.



Assignment 5: Interfaces, Inheritance, Exceptions, File I/O 6

Problem 4

Design the generic CyclicLazyList class, which implements ILazyList, whose constructor is
variadic and receives any number of values. Upon calling next, the cyclic lazy list should return
the first item received from the constructor, then the second, and so forth until reaching the end.
After returning all the values, cycle back to the front and continue. For instance, if we invoke new
CyclicLazyList<Integer>(1, 2, 3), invoking .next five times will produce 1, 2, 3, 1, 2.



Assignment 5: Interfaces, Inheritance, Exceptions, File I/O 7

Problem 5

In this series of exercises, you will design several methods that act on very large natural numbers
resembling the BigInteger class. You cannot use any methods from the class, or the class itself.
In this problem you will design several methods that act on very large natural numbers resembling
the BigInteger class. You cannot use any methods from this class, or the class itself.

(a) Design the BigNat class, which has a constructor that receives a string. The BigNat class
stores a List<Integer> as an instance variable. You will need to convert the given string
into said list. Store the digits in reverse order, i.e., the least-significant digit (the ones digit)
of the number is the first element of the list.

(b) Override the public String toString() method to return a string representation of the
BigNat object.

(c) Override the BigNat clone() method that returns a new BigNat instance that contains the
same number.

(d) Override the public boolean equals(Object obj) method to compare two BigNat
values for equality. Remember that you have to cast the given parameter to an instance of the
BigNat class.

(e) Implement the Comparable<BigNat> interface, and override the public int compareTo(BigNat
b) method to return the sign of the result of comparing the given BigNat (which we will
call 𝑏) to this BigNat (which we will call 𝑎). Namely, if 𝑎 < 𝑏, return −1, if 𝑎 > 𝑏, return
1, otherwise return 0.

(f) Design the void add(BigNat bn) method, which adds a BigNat to this BigNat. The
method should not return anything. Note: this problem is harder than it may look at first
glance!

(g) Design the void sub(BigNat bn) method, which subtracts a BigNat from this BigNat.
If the subtrahend (the right-hand side of the subtraction) is greater than the minuend, the
result is zero. Over natural numbers, this is called the monus operator.

(h) Design the void mul(BigNat bn) method, which multiplies a BigNat with this BigNat.
Note: remember how we implement multiplication recursively? You shouldn’t use recursion
for this problem, but what is multiplication? Think about the performance implications of
this approach.



Assignment 5: Interfaces, Inheritance, Exceptions, File I/O 8

(i) Design the void div(BigNat bn) method, which divides a BigNat with this BigNat. If
the divisor is greater than the dividend, assign the dividend to be zero. If the divisor is zero,
do nothing at all. Otherwise, perform integer division. Note: we can implement division
recursively. You shouldn’t use recursion for this problem, but what is division? Think about
the performance implications of this approach.



Assignment 5: Interfaces, Inheritance, Exceptions, File I/O 9

Problem 6

Design the Capitalize class, which contains one static method: void capitalize(String
in). The capitalize method reads a file of sentences (that are not necessarily line-separated),
and outputs the capitalized versions of the sentences to a file of the same name, just with the .out
extension (you must remove whatever extension existed previously).

You may assume that a sentence is a string that is terminated by a period and only a period,
which is followed by a single space. If you use a splitting method, e.g., .split, you must remember
to reinsert the period in the resulting string. There are many ways to solve this problem!

Example Run. If we invoke capitalize("file2a.in") into the running program, and
file2a.in contains the following (note that if you copy and paste this input data, you will need to
remove the newline before the "hopefully" token):

hi, it's a wonderful day. i am doing great, how are you doing. it's
hopefully fairly obvious as to what you need to do to solve this problem.
this is a sentence on another line.
this sentence should also be capitalized.

then file2a.out is generated containing the following (again, remember to remove the newline
before "hopefully".):

Hi, it's a wonderful day. I am doing great, how are you doing. It's
hopefully fairly obvious as to what you need to do to solve this problem.
This is a sentence on another line.
This sentence should also be capitalized.



Assignment 5: Interfaces, Inheritance, Exceptions, File I/O 10

Problem 7

Design the SpellChecker class, which contains one static method: void spellCheck(String
dict, String in). The spellCheck method reads two files: a “dictionary” and a content file.
The content file contains a single sentence that may or may not have misspelled words. Your job is
to check each word in the file and determine whether or not they are spelled correctly, according to
the dictionary of (line-separated) words. If a word is not spelled correctly, wrap it inside brackets
[].

Output the modified sentences to a file of the same name, just with the .out extension (you must
remove whatever extension existed previously). You may assume that words are space-separated
and that no punctuation exist. Hint: use a Set! Another hint: words that are different cases are not
misspelled; e.g., "Hello" is spelled the same as "hello"; how can your program check this?

Example Run. Assuming dictionary.txt contains a list of words, if we invoke the method
with spellChecker("dictionary.txt", "file3a.in"), and file3a.in contains the fol-
lowing:

Hi hwo are you donig I am dioing jsut fine if I say so mysefl but I
will aslo sya that I am throughlyy misssing puncutiation

then file3a.out is generated containing the following:

Hi [hwo] are you [donig] I am [dioing] [jsut] fine if I say so
[mysefl] but I will [aslo] [sya] that I am [throughlyy] [misssing]
[puncutiation]


