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1 INTRODUCTION

When evaluating diverse systems with a common goal, it is vital to have a shared test set that can be used for comparing
the systems. Shared test sets are common in many technical areas, with well-known examples in system benchmarking
(the SPEC benchmarks) and software assurance (the Software Assurance Reference Dataset, or SARD, from NIST), and
we believe that the field of cognitive tutors needs such standards to enable meaningful comparison of tutoring systems
that are developed in education research. The work described here arose from a project to develop objective evaluation
metrics for cognitive tutors in the area of natural deduction reasoning and proofs. A common dataset for evaluating
dynamic logic tutors would consist of logical propositions and sets of axioms, allowing tutoring systems to be evaluated
on effectiveness in settings utilizing either objective system metrics or assessment with students.

In our earlier project, we created an initial dataset along these lines, with 288 natural deduction problems in
propositional and first-order logic as a first step in creating a standardized dataset [3]. A particular challenge to logic
tutors, however, is that this material is taught in many contexts and many disciplines, including philosophy, mathematics,
and computer science, and various communities have developed widely varying notations. This severely complicates
our task, as evaluating five systems with 288 problems required manual conversion of each problem to a system-specific
notation and language syntax. In this paper we propose a logic language that applies in the most general setting,
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supporting propositional and first-order logic, with automated processes to convert to and from this standard and
a wide variety of alternative notations including all five systems we investigated in our other work. Our proposed
language is highly flexible, not only supporting obvious differences like different notation for logical connectives and
variables, but also supporting custom operator precedence and associativity. We call our flexible language the “gold
standard notation,” and while it is intended as an intermediate technical representation rather than a directly-usable
language for students, it is particularly well-suited for providing a common dataset for evaluating and comparing
natural deduction tutoring systems. It can also serve as an intermediate language for converting one representation to
another, supporting 𝑛(𝑛 − 1)/2 pairwise translators for 𝑛 representations with only 2𝑛 translators (to and from the gold
standard). This paper is derived from the first author’s masters thesis work [2]

2 PRIORWORK

The International Organization of Standards has a dedicated section to logic symbol syntax in their quantities and units
for mathematics standard [5]. Alas, it only addresses a very small subset of widely-used connectives as shown in table 1.
Plus, even though many other mathematical symbols are standardized and adopted in practice (e.g., set notation), logic
notation never received the same level of attention from its audience.

Table 1. ISO Logic Symbols

Semantic Meaning Operator

Logical Conjunction ∧
Logical Disjunction ∨
Logical Negation ¬
Logical Implication ⇒
Logical Equivalence ⇔
Universal Quantifier ∀
Existential Quantifier ∃

We could only find one attempt outside the ISO at formally standardizing propositional and first-order logic syntax,
and it was for a classroom mathematics setting. In [4], Dougherty attempts to standardize logic symbols for his calculus
courses. He noted that several symbols are used, sometimes erroneously, and other times in an understating context,
e.g., using an implication when a biconditional is better suited. He proposes that the connectives → and ↔ ought to be
used when making a small claim that returns true or false, whereas =⇒ and ⇐⇒ are for tautological statements.
Dougherty also dislikes implicit precedence, in favor of brackets and parentheses for grouping binary connectives so as
to not unnecessarily confuse students. Importantly, the premise of his paper is that standardizing logic syntax helps
students clarify their arguments and better illustrate the intended idea behind a proof. The downsides are that students
may often worry about what symbol to use when rather than focusing on the concepts. Additionally, standardizing
logic syntax usage in one class is helpful for that individual class, but without a universal formalization, the practicality
and portability is thereby limited.

Propositional logic and Boolean algebra play a central role in computer science, and some work has been done in
creating a common format for specifying formulas in Boolean algebra. Cook proved that the Boolean satisfiability
problem SAT isNP-Complete [1], providing the Cook-Levin theorem used in computational complexity (Karp) reduction
proofs. Boolean satisfiability answers the question, “Given a Boolean logic formula 𝐹 , is there an assignment of truth
values, i.e., an interpretation that makes 𝐹 true?” Because this problem isNP-Complete, there exists no known (efficient)
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polynomial-time solution. Because of the usefulness of SAT with program verification, graph coloring, constraint
satisfaction, artificial intelligence, electronic circuitry correctness verification, and more, the need for heuristically-fast
SAT solvers was evident. A lecture by Heule and Martins [8] describes several SAT solvers including DIMACS, CaDiCaL,
SAT4J, UBCSAT, and PySAT. Having a plethora of SAT solvers to choose from is not very helpful without meaningful
comparisons of the trade-offs between the solvers. To test SAT solvers against one another, SAT Competitions came
to light, as did the benchmark submission guidelines detailing the required input format [7]. For fair and consistent
evaluation, SAT solvers that participate in this competition must use the standardized DIMACS format. Formulas
are entered in conjunctive normal form where numbers represent literals/atoms. Each line designates a clause in the
formula. Figure 1 shows an example of the DIMACS format alongside its logic (well-formed formula) representation. As
reported by the SAT solver Varisat1, there are several extensions and variants of DIMACS, but the SAT competitions
website2 strictly states that any deviation from the required input and output formats is unacceptable.

(¬𝑥 ∨ 𝑦 ∨ ¬𝑧) ∧ (¬𝑧 ∨ ¬𝑥)
(a) Formula Representation

p cnf 3 2
-1 2 -3 0
-3 -1 0

(b) DIMACS Format

Fig. 1. DIMACS Format Example Input

The standard DIMACS format allows for head-to-head comparison of SAT solvers, while nothing similar exists for
logic tutors and theorem provers.

3 METHODS

In prior work, we explained a methodology for comparing the efficacy of publicly-available natural deduction tutors
and provers [3]. One important point of note was the overhead of manually converting formulas to a system’s required
schema. With four systems tested each with a different well-formed formula schema, and 288 formulas to test, this
required 1152 formula conversions. Furthermore, there’s the troublesome issue in that many logic symbols are not
available on a standard keyboard layout, requiring either UI buttons or symbol copy-pasting. We aim to propose
solutions to two problems: whether it’s possible to create an intermediary “gold standard" language that others may use
for evaluative testing (similar to DIMACS), and to create a framework that allows for automatic translation between
one logic language, the gold standard, and to another logic language.

There are several reasons why a standardized grammar does not necessarily already exist for formal logic. Firstly,
symbol usage varies widely from one subject to the next. Case in point, notation used in computer science may contain
subtle yet important differences from philosophy-esque logics. Secondly, preexisting sources such as textbooks, websites,
professors, and others all use preferential notation (i.e., they use what they think is correct, what they were taught,
or what is otherwise preferred in their respective discipline), providing an amalgamation of symbols for students
to use and reference which, therefore, leads students and automatic systems astray when expecting one syntax yet
receive something completely different. Thirdly, propositional logic learning platforms may or may not include certain
operators. For example, because it is trivial to represent the biconditional (if and only if) binary operator as a conjunction
of implications, it is certainly possible, albeit rather rare, to omit its symbolic representation from a language. Such

1https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html
2http://www.satcompetition.org/
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omissions cause problems when evaluating formulas either automatically or by hand due to the extended requirement
of deriving an equivalent format in a language. In terms of computability, this does not pose a significant issue because
any connective in zeroth-order logic can be equivalently represented by, for instance, either {∧, ¬} (NAND) {∨, ¬}
(NOR) due to their functional completeness property as proved by Post [10]. While not an issue for automated or
algorithmic translation, it is inconvenient to rewrite formulas by hand to fit a restrictive system when, for instance,
testing different automatic logic systems.

We propose a formal definition that aims to solve most of these problems. One component of this definition allows
users to create their own logic language definition as they see fit for their situation. This language is then bidirectionally
translatable into a gold standard format, which we will define syntactically and semantically.

The reason we formalize the language definition is to allow different logic systems with varying syntax — some
use lower-case atomic formulas, while others may restrict the alphabet to a subset. This definition allows different
connective alphabets to map to the same symbol in the gold standard which provides a seamless translation to and from
various host logic languages (i.e., the language of the implementing systems, assuming it does not, by default, use the
gold standard internally). Our language uses prefix notation for operators, which is typically not how logic is written
for human work but is beneficial as an internal representation due to its disambiguation of precedence, which we will
further discuss at the end of the next section. Some may argue that creating a gold standard from scratch, rather than
improving upon and spreading the ISO standard (see table 1), is more trouble than it is worth. As a counterargument,
we state that a gold standard allows for more than ISO currently provides via associativity and precedence definitions,
as well as the relative ease of converting to and from arbitrary logic languages.

3.1 Zeroth-Order Logic Well-Formed Formula Representation

We will start with a small example and then generalize the approach to achieve a well-defined representation. Suppose
we have a set of premises 𝑃 = {(𝐴 ↔ 𝐵), ¬(𝐶 ∧ 𝐷), 𝐶, ¬𝐵} with the conclusion 𝑐 = (¬𝐴 ∧ 𝐷). Converting this proof
into the three systems we tested is laborious at best and is increasingly tiresome the more systems we wish to evaluate.
Table 2 demonstrates the required syntax to parse an equivalent representation of𝑤 in three publicly available natural
deduction systems aimed towards students: TeachingLogic [6], NaturalDeduction [9], and TAUT-Logic [11] (a further
discussion of each system is found in [3]). The need for a uniform standard to rapidly test multiple systems without
manual intervention is readily apparent.

Table 2. Required Syntax to Parse Proof (𝑃, 𝑐)

Natural Deduction System Syntax

TeachingLogic (𝑝 <=> 𝑞) & -(𝑟 & 𝑠) & 𝑟 & -𝑞 => (-𝑝 & -𝑠)
NaturalDeduction (𝐴 ≡ 𝐵), ¬(𝐶 ∧ 𝐷), 𝐶, ¬𝐵 ∴ (¬𝐴 ∧ ¬𝐷)
TAUT-Logic (𝐴 implies𝐵) and (𝐵 implies𝐴), not(𝐶 and𝐷),

𝐶, not𝐵 ∴ (not𝐴 and not𝐷)

The most obvious differences in the notations are the representations of the connectives (the logical operators) and
different standards for literals. Let𝑀 (L, 𝑤) be the operation that “applies” the zeroth-order logic language L to the
well-formed formula𝑤 . Let L be a tuple ⟨𝛿, 𝜁 ⟩ where 𝛿 is a connective mapping function, and 𝜁 is an atomic literal
mapping function.
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The bijective connective-mapping function 𝛿 maps two sets 𝛿 : 𝑋 → 𝑌 , where 𝑋 is the set of input connectives
defined by L, and 𝑌 ⊆ {𝑁, 𝐶, 𝐷, 𝐸, 𝐼 , 𝐵, 𝑇 , 𝐹 } is the set of output connectives defined by our gold standard grammar,
where |𝑋 | = |𝑌 |. Table 3 shows the meaning of each connective in 𝑌 . Note that the arity of any connective 𝜙 ∈ 𝑋 must
match the arity of its corresponding output connective𝜓 ∈ 𝑌 .

Table 3. Connective Symbols for Zeroth-Order Logic Gold Standard

Semantic Meaning Connective Symbol

Logical Negation 𝑁

Logical Conjunction 𝐶

Logical (Inclusive) Disjunction 𝐷

Logical Exclusive Disjunction 𝐸

Logical Implication 𝐼

Logical Biconditional 𝐵

Logical Tautology 𝑇

Logical Falsehood 𝐹

The surjective function 𝜁 maps two sets 𝜁 : 𝐴 → 𝐵, where 𝐴 is the set of all atomic literals 𝜙 ∈ 𝐴 where 𝜙 is an
atomic literal used in 𝑤 , and 𝐵 is the set of output atomic formulae 𝑎 𝑗 where 𝑗 ∈ [1, |𝐴|]. One property of 𝜁 is that
the mapping need not to be linear, i.e., 𝜙1 ∈ 𝐴 does not necessarily have to map to 𝑎1 ∈ 𝐵; as long as the surjective
property holds, any mapping is valid. To put it another way, 𝜁 is a non-order-preserving map. Another property is that,
because 𝜁 is not necessarily injective, two literals from 𝐴 may map to the same literal in 𝐵. This results in languages
that do not disambiguate between casing of atoms to still convert to the gold standard. For instance, a language may
say that 𝐴 and 𝑎 are the same literal. Surjection allows these to both map to, say, 𝑎1. In following examples, we assume
that 𝐴 is finite, but for languages which allow a countably infinite number of atomic literals, e.g., 𝐴 = {𝜙1, 𝜙2, 𝜙3, ...}, a
solution is to map 𝐴 to a one-to-one set of positive integers (i.e., 𝜙𝑛 ∈ 𝐴 ↦→ 𝑎𝑚 ∈ 𝐵 where 𝑛, 𝑚 ∈ N+).

We can now define the Polish (Łukasiewicz), or prefix notation grammar𝐺 used to create a standardized notation
for zeroth-order logic. This notation takes inspiration from the syntax of the Scheme programming language with its
parenthesization of connectives and operands. For this, we must extend the definition of typical Extended Backus-Naur
Form to account for multiple-arity connectives. Thus, we introduce the notation <𝑥—R> to indicate that 𝑥 is a variable
used in the EBNF rule R, and {Λ}𝑥 to denote exactly 𝑥 applications of Λ. In the grammar, 𝛼 is the arity of a connective.
⟨atomic⟩ ::= ‘a’ (‘1’ | ‘2’ | ...)

⟨connective⟩ ::= ‘N’ | ‘C’ | ‘D’ | ‘E’ | ‘I’ | ‘B’ | ‘T’ | ‘F’

⟨𝛼—wff ⟩ ::= ⟨atomic⟩ | ‘(’⟨connective⟩ [‘ ’] {⟨wff ⟩}𝛼 ‘)’

We shall reiterate that our goal is to create a language pipeline that allows for easy conversion between one language
L, the unambiguous gold standard 𝑀 (L, 𝑤), and another arbitrary language of the same class L′. Symbolically,
L ⇔ 𝑀 (L, 𝑤) ⇔ L′.

We will now make note of converting a gold-standard formula𝑤 ′ to a language L′ such that 𝑌 ′, the connective set
of𝑤 ′ is disjoint from 𝑌 , the connective set of L′, i.e., there exists an operator in the gold standard of which there is no
syntactic equivalent in the target language L′. In this situation, L′ must augment its definition with a pattern-matching
replacement function R. R should take a connective as input, and output an equivalent representation that satisfies
the grammar of language L′. As an example, suppose𝑤 ′ = (𝐵 𝑎1 𝑎2). When converting𝑤 ′ to a target language not
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identical to the original source language (i.e., 𝐿′ ≠ 𝐿) that does not support the biconditional connective, we could
define R(𝐵) = (𝜙 → 𝜓 ) ∧ (𝜓 → 𝜙) where→, ∧ ∈ 𝑌 , and 𝜙 ,𝜓 ∈ L′. So, when we convert from the gold standard into a
target language, any instance of the biconditional 𝐵 is replaced by R into a recognizable format. At a minimum, any
set of connectives 𝑌 for any zeroth-order logic language must be functionally complete to achieve this goal [10]. One
note regarding the expansion well-formed formulas via R is its growth rate consequence. Namely, if the transformed
formula is reflective, i.e., (𝐴 → 𝐵) ∧ (𝐵 → 𝐴), the size grows exponentially in the number of replacements.

3.1.1 Zeroth-Order Logic Example 1. Let us take a “standard” propositional logic language L and a formula 𝑤 . L
consists of two functions 𝛿 and 𝜁 where

𝛿 : {⊃, ∧, ∨, ↔, ¬} ↦→ {𝐼 , 𝐶, 𝐷, 𝐵, 𝑁 }

𝜁 : {𝐴, 𝐵, 𝐶, ..., 𝑍 } ↦→ {𝑎1, 𝑎2, 𝑎3, ..., 𝑎26}

We will let𝑤 = 𝐴 ⊃ (𝐵 ↔ ¬𝐶). Thus,

𝑀 (L, 𝑤) = (𝐼 𝑎1 (𝐵 𝑎2 (𝑁 𝑎3)))

This representation reads naturally from left-to-right as follows: “An implication of 𝑎1 and a biconditional of 𝑎2 and
negated 𝑎3”. We consider all connectives as first-class functions in our definition.

While prefix notation is not as readable as the infix𝑤 , it creates a uniform standard for testing zeroth-order logic
systems. What is more is that this application process is reversible; given 𝑀−1 (L′, 𝑤 ′) where L′ = ⟨𝛿−1, 𝜁−1⟩ and
𝑤 ′ = 𝑀 (L, 𝑤), we can reproduce𝑤 using the inverse functions 𝛿−1, 𝜁−1 and a syntax tree as shown in figure 2.

𝛿−1 (𝐼 ) ↦→ ⊃

𝜁−1 (𝑎1) ↦→ 𝐴 𝛿−1 (𝐵) ↦→ ↔

𝜁−1 (𝑎2) ↦→ 𝐵 𝛿−1 (𝑁 ) ↦→ ¬

𝜁−1 (𝑎3) ↦→ 𝐶

Fig. 2. Syntax tree parsing representation of 𝑤′ to 𝑤

3.1.2 Zeroth-Order Logic Example 2. Quine’s syntax in [12] for propositional logic is slightly different from modern
variants. Specifically, his use of dots and colons removes superfluous parentheses when defining operator precedence.
Largely, we will ignore this notation in favor of his parenthesized form. In addition, Quine uses an empty string 𝜀

to represent conjunction (e.g., 𝑆1𝑆2 represents a conjunction between two well-formed formulas 𝑆1 and 𝑆2). Finally,
negations on a single atom 𝑝 are condensed with a vertical overbar 𝑝 . To compensate for the digital representation,
we will keep the negation in front of the atom (e.g., −𝑆1 where 𝑆1 is a well-formed formula). Now, we define L with
functions 𝛿 and 𝜁 where

𝛿 : {⊃, 𝜀, ∨, ≡, −} ↦→ {𝐼 , 𝐶, 𝐷, 𝐵, 𝑁 }

𝜁 : {𝑝, 𝑞, 𝑟, 𝑠, ..., 𝑧} ↦→ {𝑎1, 𝑎2, 𝑎3, 𝑎4, ..., 𝑎11}
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We will let𝑤 = −((𝑝 ∨ 𝑞) (−𝑟 ∨ 𝑠)) ⊃ (−(𝑝 ∨ 𝑞)𝑠). Thus,

𝑀 (L, 𝑤) = (𝐼 (𝐶 (𝑁 (𝐷 𝑎1 𝑎2)) (𝐷 (𝑁 𝑎3) 𝑎4))

(𝐶 (𝑁 𝑎1 𝑎2) 𝑎4))

This representation reads as “An implication where the left-hand side is a conjunction between a negated disjunction of
𝑎1 and 𝑎2, and a disjunction of negated 𝑎3 and 𝑎4. The right-hand side of the implication is a conjunction between a
negated disjunction of 𝑎1 and 𝑎2, and 𝑎4.”

We will now define a precedence mapping function for the incoming formula Γ. By enforcing prefix notation in
the gold standard, we no longer have to deal with the inherent complexities of operator precedence present in the
commonly-used infix notation.

Let Γ be an injective function that maps the set of connectives 𝛿 toN, namely 𝛿 ↦→ N. Γ is designed to give connectives
in 𝛿 a priority level, where the closer its mapped natural number is to zero, the higher its priority. We define priority as
the precedence of a connective. When a system defines Γ, it implies that any ambiguous well-formed formula in its
corresponding language is parsable without parenthesization. Γ, as an algorithm, automatically adds parentheses to
disambiguate the formula.

3.1.3 Precedence Mapping Example. We will use the same functions 𝛿 and 𝜁 from the first propositional logic example
in section 3.1.1. We will also define Γ as

Γ : {⊃, ∧, ∨, ↔, ¬} ↦→ {3, 1, 2, 4, 0}

Now, suppose 𝑤 = 𝐴 → ¬𝐵 → 𝐶 ∧ ¬𝐴. The precedence function parenthesizes/disambiguates 𝑤 to ((𝐴 → ¬𝐵) →
(𝐶 ∧ ¬𝐴)), which is then converted into the gold standard as

𝑀 (L, 𝑤) = (𝐼 (𝐼 𝑎1 (𝑁 𝑎2)) (𝐶 𝑎3 (𝑁 𝑎1)))

Since we consider Γ to be optional (opting for a default precedence of logical negation, logical conjunction, logical
disjunction, logical implication, then logical biconditional), a system without a defined Γ should, optimally, output
a warning when it parses an ambiguous well-formed formula. Defining Γ allows for any ambiguous formula to be
converted into one that is unambiguous, as we previously stated, and also allows for “custom precedence” levels (i.e., if
we want to bind logical disjunction higher than logical conjunction, it is trivial to do so).

Finally, some may question the associativity of connectives. We assume that all operators are left-associative, similar
to traditional addition, subtraction, multiplication, and division. For those who wish to not always strictly assume
left-associativity for connectives, we will now define the associativity function 𝛾 .

Let 𝛾 be a surjective function that maps the set of binary connectives 𝑋𝐵 ⊆ 𝑋 to the set {𝐿, 𝑅}, where 𝐿 and 𝑅

designate left and right-associativity respectively.

3.1.4 Associativity Mapping Example. We will use the same functions 𝛿 and 𝜁 from the previous precedence mapping
function example. In addition, we will define 𝛾 as

𝛿 : {⊃, ∧, ∨, ↔, ¬} ↦→ {𝐼 , 𝐶, 𝐷, 𝐵, 𝑁 }

𝜁 : {𝐴, 𝐵, 𝐶, ..., 𝑍 } ↦→ {𝑎1, 𝑎2, 𝑎3, ..., 𝑎26}

𝛾 : {⊃, ∧, ∨, ↔} ↦→ {𝐿, 𝑅}
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Where∀𝐶 ∈ 𝑋𝐵 ,𝛾 (𝐶) = 𝐿 (i.e., every binary connective is left-associative). Now, suppose𝑤 = (𝐴 → 𝐵 → 𝐶)∧(¬𝐴∧¬𝐵).
The associativity function disambiguates𝑤 to ((𝐴 → 𝐵) → 𝐶) ∧ (¬𝐴∧¬𝐵). This is converted into the gold standard as

𝑀 (L, 𝑤) = (𝐶 (𝐼 (𝐼 𝑎1 𝑎2) 𝑎3) (𝐶 (𝑁 𝑎1) (𝑁 𝑎2)))

3.1.5 Natural Deduction Extension. It is simple to extend𝐺 to support premises and conclusions using the same syntax.
We can define a new function 𝑁 (L, 𝑃, 𝑐), where L is the same definition as before, 𝑃 is a set of well-formed formula
acting as the premises of the proof, and 𝑐 is the well-formed formula acting as the conclusion of the proof. Our new
grammar 𝐺 ′ is as follows:
⟨atomic⟩ ::= ‘a’ (‘1’ | ‘2’ | ...)

⟨connective⟩ ::= ‘N’ | ‘C’ | ‘D’ | ‘E’ | ‘I’ | ‘B’ | ‘T’ | ‘F’

⟨𝛼—wff ⟩ ::= ⟨atomic⟩ | ‘(’⟨connective⟩ [‘ ’] {⟨wff ⟩}𝛼 ‘)’

⟨premise⟩ ::= ‘(’‘P’ ⟨wff ⟩‘)’

⟨conclusion⟩ ::= ‘(’‘H’ ⟨wff ⟩‘)’

⟨proof ⟩ ::= ‘(’⟨conclusion⟩ {⟨premise⟩}‘)’

The preceding grammar states that a premise is preceded by the letter 𝑃 standing for premise, conclusions are preceded
by 𝐻 for hence, and a proof is a conclusion followed by zero or more premises (a proof with zero premises is a theorem).

3.1.6 Natural Deduction Example. Let us create a proof where 𝑃 = {¬(𝐶 ∨𝐷), 𝐷 ↔ (𝐸 ∨ 𝐹 ),¬𝐴 ⊃ (𝐶 ∨ 𝐹 )}, and 𝑐 = 𝐴.
We will, again, use 𝜁 from section 3.1.1. Therefore,

𝑁 (L, 𝑃, 𝑐) = ((𝐻 𝑎1)

(𝑃 (𝑁 (𝐷 𝑎3 𝑎4)))

(𝑃 (𝐵 𝑎4 (𝐷 𝑎5 𝑎6)))

(𝑃 (𝐼 (𝑁 𝑎1) (𝐷 𝑎3 𝑎6))))

We read this as “Hence 𝑎1 if 𝑃1 is true and 𝑃2 is true and 𝑃3 is true”, where 𝑃1, 𝑃2, and 𝑃3 are the individual premises
that comprise the argument. This style largely resembles the way we write Prolog (conditional) rules.

3.2 First-Order Logic Well-Formed Formula Representation

First-order logic is a superset of zeroth-order logic, meaning we can reuse most of our definitions from the previous
section. We will, however, need to slightly redefine L to allow for mapping predicate definitions, constants, and
variables. Further, so as to not confuse the function definitions from zeroth-order logic, we will instead use new letters
to represent mapping functions unique to first-order logic semantics.

Let M(L, 𝑤) be an operation that applies the first-order gold standard to a logic language L and a well-formed
formula 𝑤 . Let L be a quadruple ⟨𝛿, 𝜍, 𝜒, 𝜂⟩ where 𝛿 is a connective mapping function, 𝜍 is a predicate mapping
function, 𝜒 is a constant mapping function, and 𝜂 is a variable mapping function. For first-order logic, we slightly
modify 𝛿 from its zeroth-order definition in the sense that it now maps two sets 𝛿 : 𝑋 → 𝑌 , where 𝑋 is the set of
input connectives defined by L, and 𝑌 ⊆ {𝑁, 𝐶, 𝐷, 𝐸, 𝐼 , 𝐵, 𝑇 , 𝐹, 𝑍, 𝑋, 𝑉 } is the set of output connectives defined
by our grammar, where |𝑋 | = |𝑌 |. 𝑁 , 𝐶 , 𝐷 , 𝐸, 𝐼 , 𝐵, 𝑇 , and 𝐹 are identical in both syntactic and semantic meaning to
zeroth-order logic as referenced in table 3. Table 4 shows the new operators added by first-order logic. Note that 𝑍
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and 𝑋 have arities dependent on the formula used, so we cannot restrict it syntactically. Identity 𝑉 , on the other hand,
is a special predicate for connecting constants and variables. To simplify its syntactic usage, we will include 𝑉 in 𝛿

definitions for first-order logic.

Table 4. Connective Symbols for First-Order Logic Gold Standard

Semantic Meaning Connective Symbol

Universal Quantifier 𝑍

Existential Quantifier 𝑋

Identity 𝑉

The bijective function 𝜍 maps two sets 𝜍 : 𝐴 → 𝐵, where𝐴 is the set of predicate letters 𝜙 ∈ 𝐴 where 𝜙 is a predicate
letter used in the wff𝑤 , and 𝐵 is the set of output predicate letters 𝐿𝑖 where 𝑖 ∈ [1, |𝐴|].

The bijective function 𝜒 maps two sets 𝜒 : 𝐶 → 𝐷 , where𝐶 is the set of constant letters𝜓 ∈ 𝐶 where𝜓 is a constant
identifier used in𝑤 , and 𝐷 is the set of output constant identifiers 𝑐𝑖 where 𝑖 ∈ [1, |𝐶 |].

Lastly, the bijective function 𝜂 maps two sets 𝜂 : 𝐸 → 𝐹 , where 𝐸 is the set of variable letters 𝜌 ∈ 𝐸 where 𝜌 is a
variable identifier used in𝑤 and 𝐹 is the set of output variable identifiers 𝑣𝑖 where 𝑖 ∈ [1, |𝐸 |].

Like the atomic literal mapping function 𝜁 from zeroth-order logic, 𝜍 , 𝜒 , and 𝜂 must define every predicate letter,
constant letter, and variable letter respectively supported by their language to represent a valid mapping.

Now, similar to zeroth-order logic, we will construct the gold standard Polish notation grammar G for first-order
logic. Likewise, we will utilize the previously-defined notation <𝑥—R> to eliminate ambiguity with operator arity. Two
points to note are that, because identity is a special connective in first-order logic, we restrict its syntactic definition to
only constants and variables. Additionally, quantifiers have a restriction in that they must bind one variable following
their declaration, as well as a bound well-formed formula. Finally, all predicates must have at least one constant or
variable, as a predicate with no terms, i.e., a zero arity predicate is an absurdity in first-order logic.
⟨constant⟩ ::= ‘c’ (‘1’ | ‘2’ | ...)

⟨variable⟩ ::= ‘v’ (‘1’ | ‘2’ | ...)

⟨literal⟩ ::= ⟨constant⟩ | ⟨variable⟩

⟨predicate⟩ ::= ‘L’ (‘1’ | ‘2’ | ...)

⟨connective⟩ ::= ‘N’ | ‘C’ | ‘D’ | ‘E’ | ‘I’ | ‘B’ | ‘T’ | ‘F’

⟨identity⟩ ::= ‘V’

⟨quantifier⟩ ::= ‘Z’ | ‘X’

⟨𝛼—wff ⟩ ::= ‘(’⟨predicate⟩ ⟨literal⟩ {⟨literal⟩}‘)’
| ‘(’⟨connective⟩ [‘ ’] ⟨wff ⟩𝛼 ‘)’
| ‘(’⟨quantifier⟩ ⟨variable⟩ ⟨wff ⟩‘)’
| ‘(’⟨identity⟩ ⟨literal⟩ [‘ ’] ⟨literal⟩‘)’

The above grammar states the following rules: constants use the prefix 𝑐 with a uniquely identifying successive integer.
Variables follow the same rules with the exception that variables are prefixed by 𝑣 . Literals are either constants or
variables. Predicates, likewise, use the same identifying principle except that they use 𝐿 as a prefix. As aforesaid, the
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identity and quantifier operators are special in the wff definition, in that a quantifier binds a variable to a well-formed
formula, and an identifier wraps two literals together. In addition to these special cases, predicates bind at least one
literal, and a connective contains as many well-formed formula operands as its arity requires.

3.2.1 First-Order Logic Example. We will, once again, use a “standard” first-order logic language L and a formula𝑤 . L
is a quadruple of the four functions 𝛿 , 𝜍 , 𝜒 , and 𝜂 where

𝛿 : {⊃, ∧, ∨, ↔, ¬, ∀, ∃, =} ↦→ {𝐼 , 𝐶, 𝐷, 𝐵, 𝑁 , 𝑍, 𝑋, 𝑉 }

𝜍 : {𝑃, 𝑄, 𝑅, ..., 𝑍 } ↦→ {𝐿1, 𝐿2, 𝐿3, ..., 𝐿11}

𝜒 : {𝑎, 𝑏, ..., 𝑡} ↦→ {𝑐1, 𝑐2, ..., 𝑐20}

𝜂 : {𝑢, 𝑣, ..., 𝑧} ↦→ {𝑣1, 𝑣2, ..., 𝑣6}

Suppose𝑤 = ∀𝑥∀𝑦¬𝑃𝑥𝑦𝑐 ∧ (𝑄𝑐𝑑 ∨ ∃𝑧𝑅𝑧). Thus,

M(L, 𝑤) = (𝐶 (𝑍 𝑣4 (𝑍 𝑣5 (𝑁 (𝐿1 𝑣4 𝑣5 𝑐3))))

(𝐷 (𝐿2 𝑐3 𝑐4) (𝑋 𝑣6 (𝐿3 𝑣6))))

We read this as “A conjunction of a universal quantifier that binds 𝑣4, a universal quantifier binding 𝑣5, bound to the
negation of 𝐿1 𝑣4 𝑣5 𝑐3 and a disjunction of the following: 𝐿2 𝑐3 𝑐4 and an existential quantifier which binds 𝑣6, bound to
𝐿3 𝑣6.”

4 DISCUSSION

Our broad idea behind implementing the gold standard as an intermediary logic language is to test real-world natural
deduction systems with varying syntax — not semantics; other functionalities are presented to lay the groundwork for
future exploration of non-standard representations. The current work allows for fast testability.

4.1 Limitations

While we believe that the gold standard has a lot of potential, its current implementation has a few limitations that we
will now list.

Firstly, it is not possible to transform non-infix logic languages into the gold standard and vice-versa. A potential
solution may include providing formal inductive definitions of a logic language. We feel, however, that this is largely a
theoretical limitation.

It is also not possible to transform the gold standard into non-standard languages with custom precedence or
associativity rules (the forward direction, though, is possible as previously discussed). For example, we cannot go from
the gold standard to a language L′ such that ∨𝑙 ≥ ∧𝑙 where 𝑙 is the provided precedence level as a positive integer.

Transforming between a logic languageL and the gold standard removes implicit ambiguity/precedence/associativity
as defined by L. This consequently means a formula sent to the gold standard may not always equate the formula
received from a gold standard translation. We feel as though an unambiguous formula reduces possible errors and
confusion. As such, we prioritize a guaranteed semantic translation over a guaranteed syntactic translation.

Direct translation of natural deduction proofs is currently unsupported because there must exist a mechanism, e.g., a
function, to automatically identify premises and the conclusion in the source language (existing solution denotes a
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premise set 𝑃 where every 𝑝 ∈ 𝑃 is a premise, and 𝑐 is the sole conclusion where 𝑃 may be the empty set). This means
that all premises in 𝑃 must be individually converted to the gold standard.

5 CONCLUSION AND FUTUREWORK

We have presented a gold standard syntax for both zeroth and first-order logics. In future work we aim to test more
natural deduction systems than just those presented in [3]. We also plan to publish a system for performing said
transformations to and from the gold standard alongside a database of gold standard formulas for others to use as a
testbench. Alongside the system, we wish to publish an ANTLR 3 grammar for the gold standard as presented in this
paper that others may contribute to and use in various other programming languages.
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