
1

On an Enhanced Hands-on Approach to Formal
Logic Education

L. Joshua Crotts and Christopher Brantley
Department of Computer Science

University of North Carolina at Greensboro

Abstract—In this paper we describe FLAT (the Formal Logic
Aiding Tutor): an educational tool to aid students in the learning
of introductory formal logic, namely propositional and first-
order predicate logic. The aim is to complement the traditional
textbook pedagogy with visually appealing software that works
well not only for student review and practice, but also for
classwork or homework submission. Lastly, we provide potential
solutions to problems relating to the automatic generation of
formal logic exercises such as natural language translation and
random expressions.

Index Terms—Education, formal logic, automatic theorem
prover, logic pedagogy

I. INTRODUCTION

MANY students consider formal logic a challenging
subject. Both propositional and first-order predicate

logic introduce computer science and mathematics related
topics which may confuse introductory learners. Further, its
cumbersome and esoteric notation, alongside the abundance
and reliance on proofs and theoretical concepts can discourage
many students. Because formal logic builds on top of itself,
when a student fails to understand trivial examples as well as
the underlying axioms and rules, it is likely that more complex
problems and exercises will only exacerbate their confusion
and frustration.

With the reliance and emphasis on critical thinking and
logical thought processing in both academic and industry en-
vironments, formal logic courses are an excellent way to gain
exposure to these necessary skills for debate, argumentation,
research, and many more subjects [1]. Most philosophy majors
are required to take a course in formal logic, which provides
an introduction to propositional logic and quantifier theory.

A. Definitions
Throughout this paper, we will use terms and definitions

concerning propositional and first-order predicate logic. For
convenience, they are labeled here. Note that there exist
differences in notation and definition depending on the source,
but ours are relatively universal to typical standards in their
contexts.

Definition 1 (Well-Formed Formula/Sentence): A well-
formed formula (abbreviated as wff) is a propositional or first-
order predicate logic sentence that is, by some classification,
properly or well defined. In our case, the meaning of properly
defined comes through our language grammar for both classes
of logic.1

1The grammar is listed as a .g4 file here ¡Github ref¿

Definition 2 (Connective): A connective is a n-ary operator
that coalesces n well-formed formulas together.

Definition 3 (Model): A model of a PL formula F is a truth
value assignment of all atoms in F .

Definition 4 (Constant): A constant in a FOPL formula F is
a lowercase letter between a and t. Constants represent static
entities in some domain D.

Definition 5 (Variable): A variable in a FOPL formula F is
a lowercase letter between u and z. Variables represent place-
holders or generalizations of some domain D in a predicate.

II. MOTIVATION

Automatic logic tutors and theorem provers exist in many
dimensions and formats, ranging from downloadable and exe-
cutable software to modern and lively web applications. From
our investigations, however, these systems and software often
do not provide a beginner-friendly experience, nor do they
provide the functionality we want students to engage with.
Others like Near et al. [2] introduce fast theorem provers
written in functional programming languages, but their broad
intention is not to teach students, particularly non-computer
science students.

For starters, there exist plenty of online truth table genera-
tors that work well not only in the formal logic domain, but
also electrical engineering, computer science, and (discrete)
mathematics domains. Some even provide immediate feed-
back for the user as they attempt to derive the truth table
by hand [3]. An apparent drawback is that they require a
student to have prior experience with the underlying logic or
preexisting knowledge of entering values into a truth table
[4]. Beyond this, Lukins et al. [5] described and built the
P-Logic Tutor system for propositional logic: a Java Web
Start (JNLP) system. Today, their provided link is offline,
so there is no way of evaluating or testing its functionality
compared to its more modern counterparts. From the details
the authors provide, though, students could enter their own
data into the program and receive feedback on its correctness.
One significant downside to the P-Logic Tutor is that it only
covers/handles propositional logic across all its units and tools,
as its name suggests. Moreover, its usage required students
to log in for purposes of improving and personalizing the
experience, a mandate that other systems lack. Requirements
like this dissuade users from the tool who are not affiliated
with their university. Another software-based solution (i.e.,
executable outside the browser) is LEGEND by Vlist [6].



2

LEGEND is untestable as it is closed-source and unavailable
to the public, but it allows the user to prove and generate
proofs from a (simple) given propositional formula. Cerna
et al. [7] developed AXolotl: a clean Android formal logic
tutor which includes several types of proofs and tutorials
for deriving examples, though its reliance on a file protocol
to load examples is a bit cumbersome for the non-savvy
student or instructor. Further, it appears to focus heavier on
an accelerated natural deduction curriculum, whereas FLAT
attempts to target absolute beginners at the material. Almost
all systems we investigated only allow for propositional logic
proofs or evaluation because of first-order predicate’s infinite
nature when applying universal quantifier rules as well as the
general difficulty curve over propositional logic.

The overarching problem is twofold: firstly, solvers may
give answers (and sometimes detailed derivations), but they
may not enhance a student’s understanding if they copy an
answer but retain nothing else from doing so. Secondly, con-
sider what a confused student may do when working on assign-
ments: go online for assistance. Suppose a student is stumped
on a troubling problem, and they search ”propositional logic”,
”first-order predicate logic”, or similar terms. The first few
pages link to solvers that, again, are fulfilling but likewise are
far too complicated for their current audience. Additionally,
they are likely to encounter propositional and first-order predi-
cate logic lectures from other universities or curricula. External
sources pose the issue of encountering connectives that they
do not use or have not (yet) been taught. Applying logic
rules and axioms through a computer and receiving instant
results helps students understand the fundamentals since they
see and interact with a practical example of these abstract
and theoretical concepts. A potential way of expressing these
concepts (particularly in first-order predicate logic) comes
through the declarative logic programming language Prolog.
The standard modus ponens inference rule, for instance, is
the building block of logical consequence in Prolog [8]. The
issue with this and similar approaches, though, is that it relies
on the student having knowledge of not only programming,
but non-trivial concepts related to logic programming such
as backtracking, unification, and recursion – practices that a
beginner may be unfamiliar with.

III. IMPLEMENTATION

We set a goal of creating a tool that provides students an
alternative to their traditional textbooks and other, sometimes
unorthodoxy, methods of learning in favor of a visual and
highly interactive interface. Our tool is called the Formal
Logic Aiding Tutor, abbreviated as FLAT2. This application
is based off an earlier work created by a group of under-
graduate seniors in their respective capstone computer science
course called LLAT (the Logic Learning Assistance Tool).
This software was briefly presented and demoed at the local
undergraduate creativity expo. The extension is to refine and
provide an improved pedagogical experience, rather than being
merely a tool that solves problems as inputted by the user,
as well as to include new features and algorithms. Unlike

2FLAT is located on GitHub ¡here¿

many modern applications, FLAT was developed and built as
a desktop application rather than mobile or web using the
Java programming language. The motivation and reasoning
were we wanted to have the support of fully developed and
established libraries with full control over the tech stack in
one location. Additionally, because formal logic uses symbols
that are difficult to copy and paste (or type) on a touchscreen
device, we decided to completely exclude mobile devices.
We implemented the frontend using JavaFX and use several
remote APIs (Application Programming Interfaces) for various
features as described in the following subsections.

A. Features

Upon starting FLAT, an empty canvas greets the user with
informational panes on all sides. The left displays usable
connectives for the wff input field. The right will show
information about a symbol and its uses (with examples,
definitions, and alternate notations) and are enabled via CTRL-
clicking the corresponding symbol in the left pane. The top
presents three drop-down options for choosing algorithms to
evaluate wffs with. The bottom is the text input field, or wff
input area. The solve button to the left is used after an input is
entered. Then, the user should select an appropriate algorithm
from the drop-down lists which are automatically tailored to
what the user inputs (e.g., if a student enters two wffs, only
algorithms that use two or more wffs are displayed, or if they
enter a predicate logic formula, only predicate logic algorithms
are available). From there, they press ”Apply”. This will
create several diagrams and results depending on the applied
algorithm. These separate screens are switchable via buttons
underneath the algorithm selector dropdowns. Beside these
buttons is a ”Result” keyword, where ”determiner” algorithms
display true or false (described in section 3.2). Trees in the
center pane may be adjusted by zooming or dragging the
mouse while clicking on a node/subtree, implemented with
a custom tree-drawing algorithm.

The top pane lists three drop-downs: File, Export, and Help.
In File, there is a settings pane where the user can customize
primary and secondary colors of their environment to aid
in accessibility (shown in figures 1 & 2). There also exists
a limitations section where timeouts of algorithms may be
altered (these are described further in section 4.4). Users may
also export their work in the form of a parse or truth tree,
or truth table via LaTeX source or PDF. PDF creation calls
a remote API, so an internet connection is required for this
function.

The right pane also has a switch to enable ”Practice Mode”
in FLAT. This allows students to input problems and then test
their understanding of the algorithms and the interpretation
of their formulas. When this mode is enabled, the solver
functionality is temporarily disabled so the students do not
immediately see the answer to their input. Each algorithm
has a prompt that tells the students what to do, as well
as an information section describing in greater detail how
they should approach the problem. Figure 1 demonstrates this
where the student is tasked with proving a FOPL formula with
natural deduction. Besides natural deduction, students derive



3

Fig. 1: Practice mode enabled with natural deduction.

Fig. 2: FLAT home screen with bound variable detector.

truth tables, open/closed branches on truth trees, logical prop-
erties of formulas, operations related to variables/operators,
and more. Section 3.2 along with table 1 provide thorough
explanations.

Because some students learn foreign concepts better in their
native language, and the fact that formal logic is relatively
universal due to its close ties to mathematics and computer
science, we implemented a language translation caching al-
gorithm using Google Translate. These translations are then
saved to a local file so the application does not recompute
translations whenever languages are switched. We tested sev-
eral languages, including Arabic, French, and Spanish for
accuracy. We found that Latin-derived languages translate
correctly more often than languages such as Japanese, Chinese,
and Arabic. Our application is limited to Google’s translation
capabilities, so perhaps choosing a different API may yield
improved results.

B. Algorithms

Formal logic courses employ several types of exercises for
students to demonstrate their understanding of the material.
Many of the algorithms we chose to implement stem from
our local introduction to formal logic course. However, these
exercises and algorithms are derived from other formal logic
courses and as such apply to a broad range of classes.

We label this section ”Algorithms”, but realistically, these
are the features and ”subprograms” that the user may perform
on their input. Users can input a formula to first determine
if it is well-formed or not. As stated in section 1.1, the
definition of well-formed depends on our grammar for the
logic classifications. Section 3.3 describes this implementation
in further detail.

Some schools, textbooks, subjects, etc. use wildly different
notation. So, to reduce as much confusion among students

as possible, we enforce parenthetical precedence around well-
formed formulas, but allow students to mix and match symbols
provided that the resulting formula remains well-defined. For
example, the first-order logic sentence ”For all x, if x satisfies
P then x satisfies Q and a does not satisfy P” is symbolically
represented as (x)(Px → (Qx & ∼Pa)) but is also semantically
equivalent to (∀x)(Px ⊃ (Qx ∧ ¬Pa)). Different sources ex-
plicitly state a precedence for unary (quantifiers, negation) and
binary connectives (conjunction, disjunction, biconditional,
implication, exclusive-or). FLAT, though, prefers the use of
parentheses as it requires students to enforce their own order-
ing of operands to lower the likelihood of common mistakes
in their input. Allowing for implicit operator precedence is
beneficial for those who understand the material in greater
detail than a novice who may unintentionally make simple
typos in their work.

Table 1 provides a subset of algorithms we have imple-
mented. Some algorithms are only for propositional logic
or first-order predicate logic (but not both), yet many work
with both. Likewise, some algorithms require more than one
well-formed formula to produce a meaningful result. Each
algorithm is supplemented with a short description. Most
algorithms fall into one or two categories: determiners or
detectors. Detectors return a list of results. This list can be
empty, a singleton, or more. For instance, if the user runs
the Free Variable Detector on a first-order predicate logic
sentence, it will return a list of all free variables in that
sentence. On the contrary, determiners return a Boolean result
for the supplemented algorithm. For example, if the user
runs the Open Sentence Determiner on a first-order predicate
logic sentence, it will return true if the sentence is open,
and false otherwise. Some algorithms we have implemented
are not listed as they require further investigation. The most
complex of which is the structure that builds the underlying
representation of the user’s input: the parse tree, although a
more accurate description would be the abstract syntax tree.

C. Parsing Input
According to Aho et al. [9], a parse tree is a pictorial

representation of the top-down evaluation of a string according
to some grammar, whereas an abstract syntax tree (abbreviated
as AST) is a structure where parents of a node are operators,
and the children are operands. Each node in the AST repre-
sents a well-formed formula that may be structured recursively
of sub-well-formed formulas. The initial parse tree is used
to ensure the formula entered is valid on a syntactic level.
ANTLR (ANother Tool for Language Recognition), a lexing
and parsing library [10] has been used. If the user enters
an invalid formula, a relevant error message is displayed.
Since a significant component of formal logic relies on the
structure of a wff, quality and meaningful error messages
are paramount as they help the user understand where they
went wrong (see Figure 4). After the formula is validated,
it is sent forward to the AST representation. As mentioned
earlier, well-formed formulas are recursive in nature, so using
the AST as a backbone for algorithm results was obvious. If a
well-formed formula W is constructed with several sub-well-
formed formula children and we want to compute the result



4

TABLE I: Subset of Implemented Algorithms in FLAT

Algorithm Definition

Truth Tree A truth tree is a description of the truth
interpretations of a logic formula F .

Truth Table A truth table is a sequence of true and false
values evaluated for all models of a PL
formula F .

Free Variable Detector Finds all free variables in a FOPL formula
F . An occurrence of a variable v ∈ F is
free iff there is no quantifier Q that binds v
in its scope.

Bound Variable Detector Finds all bound variables in a FOPL formula
F . An occurrence of a variable v ∈ F is
bound if there is a quantifier Q that binds
v in its scope.

Open Sentence
Determiner

A FOPL formula F is open if ∃v ∈ F such
that v is free.

Closed Sentence Deter-
miner

A FOPL formula F is closed if ∀v ∈ F , v
is bound.

Ground Sentence Deter-
miner

A FOPL formula F is ground if F does not
contain any variables.

Main Operator Detector A unary or binary connective c is the main
operator of a logic formula F if it is the
first-parsed operator when recursively eval-
uating F . If F contains no connectives, then
there is no main operator.

Vacuous Quantifier Detec-
tor

A quantifier q in a FOPL formula F is
vacuous if it does not bind any variable v
in its scope.

Logical Tautology Deter-
miner

A logic formula F is a logical tautology if
it is true in every interpretation/model.

Logical Falsehood Deter-
miner

A logic formula F is a logical falsehood if
it is false in every interpretation/model.

Logical Contingency De-
terminer

A logic formula F is a logical contingency
if it is neither a logical tautology or logical
falsehood.

Logically Consistent De-
terminer

Two logic formulas F , F ′ are logically
consistent if there a model M such that F
and F ′ are true and FM = F ′

M.
Logically Contradictory
Determiner

Two logic formulas F , F ′ are logically
contradictory if there is no model M such
that FM = F ′

M.
Logically Contrary Deter-
miner

Two logic formulas F , F ′ are logically
contrary if there is at least one model M
that is false and FM = F ′

M, and there
does not exist a model M′ that is true and
FM′ = F ′

M′ .
Logically Implied Deter-
miner

Two logic formulas F , F ′ are logically
implied if there does not exist a model M
such that FM is true and F ′

M is false.
Logically Equivalent De-
terminer

Two logic formulas F , F ′ are logically
equivalent if there does not exist a model
M such that FM ̸= F ′

M.

of some algorithm A, we impose a paradigm that ”detector”
algorithms always return a list of well-formed formula nodes.
Consequently, if the algorithm has reference to the root of the
AST, it can pinpoint which nodes are answers produced by
A, and display those in the graphical interface. For example,
suppose the user wants to find all bound variables to the
formula F = ((x)(Px & Qyx) ≡ ∼(y)(Pya & ∼Qbx)). Recall
the definition of a bound variable from Table 1. From this,
we see that the first two occurrences of x are bound to the
universal quantifier (x). Similarly, the second occurrence of y
is bound by the negated universal quantifier ∼(y). All other
variable occurrences are free. Representing this as an abstract
syntax tree follows naturally and therefore, an algorithm can
perform a linear search to compute the query while knowing

exactly what type of node resides at any arbitrary step. Com-
putationally, this implies no backtracking or any unnecessary
invariants that do not contribute to the algorithm—everything
is embedded in the structure of the formula, so algorithms
need to do very little if the underlying representation is, for
whatever reason, altered.

Fig. 3: Syntax error when evaluating (x)(Px → Ax & Qbc).

D. Random Formula Generation

Another prominent algorithm missing from Table 1 is the
generation of random propositional and first-order predicate
logic formulas. Hladik [11] and Amendola et al. [12] have
investigated this problem at a theoretical level, whereas our
approach is much simpler. We constructed a probabilistic
recursive algorithm to generate formulas that aims to create
unique and well-defined wffs while avoiding complicated
methods that try to perfect the generation. Since FLAT does
not automatically try to solve generated formulas, it was of
less importance to implement a highly efficient (and provably
correct) algorithm. Our method uses static probabilities for
generating unary and binary connectives which decrease as
each are used/generated. Random formulas are recursively
constructed such that as they grow in complexity, the more
likely it is for generation to terminate (to prevent incoherently
long formulas). Predicates, constants, and atoms are chosen at
random, but in order to maintain a level of consistency, these
are saved to a list. Thus, when generating more predicates,
constants, and atoms, we can either poll from this list or
generate unused ones. Additionally, because predicates that
share the same letter but different arities are not well-formed,
storing previously-generated predicates with their arities helps
tremendously. The following is a list of five formulas generated
from FLAT that students may use for practice.

• ∼(V → (M & ∼V))
• ∼(Lvv ↔ ∼(∃w)∼(z)(Laa → Qua))
• ∼∼(Buujx → ∼(∃u)(∃v)Bvjwq)
• ∼(∼(v)Nvvo & Gemme)
• ∼(v)(∼Fvlcv → (∼Flxvc & Fidwy))

E. Argument Validity

Determining whether an argument is deductively valid or
not is crucial in formal logic as it determines whether we can
deduce the soundness of the argument. FLAT provides two
methods of proving if an argument is valid: semantic tableaux
and natural deduction.

Graham [13] defines a semantic tableau as a structure with
connected nodes and branches to tips or leaves, with a root
node. This is effectively the definition of a n-ary tree. A
semantic tableau, or truth tree, can be used to prove an



5

argument is valid or not by listing the premises and negated
conclusion from top to bottom, then deriving contradictions.
A truth tree branch is closed if there is a branch from a node
with wff P to a node with wff ∼P. In other words, there
exists a node with its negation as an ancestor. If a truth tree
contains only closed branches, it is valid. Truth trees offer a
different perspective on the validity of an argument, because
students only have to derive contradictions. Rather than being
required to decide which rule to apply at all steps, building
a tree is almost uniform and mechanical. As such, creating
propositional logic truth trees is unambiguous since they are
always decidable. Conversely, first-order predicate logic is
only semi-decidable due to the universal quantifier and identity
operators. Since these operators can be used infinitely many
times, the student must be able to determine where to apply
the appropriate rule when searching for a contradiction. For
software, however, this is trickier because, even though an
algorithm may eventually derive a truth tree, it may be so
large and unwieldy that it is almost meaningless for anyone
investigating it. FLAT uses heuristics to determine when a
truth tree ought to apply a universal or identity decomposition.
For example, only reapplying constants that have previously
been used on a branch, and an iteration timeout to prevent
infinite generation.

Natural deduction is the other popular method of deter-
mining an argument’s validity. FLAT uses a recursive goal-
searching algorithm to determine if a list of premises and con-
clusion are deductively valid. We will describe our approach
and its comparison to other software in the next section.

Fig. 4: Number of lines in each propositional logic proof
software surveyed.

IV. RESULTS AND DISCUSSION

A. Related Work

Because natural deduction has close ties with discrete math,
computer science, and philosophy, its appearance in online
solvers is to be expected. To our surprise, however, there were
not many propositional logic natural deduction generators
available, and even less so for first-order predicate logic.
To determine the effectiveness of FLAT’s natural deduction
algorithm, we compared its efficiency (measured in number
of lines in the generated proof) to three different systems
freely available online: TAUT from the Buenos Aires Logic
Group [14], NaturalDeduction from Jukka Häkkinen [15],
and Natural Deduction from the Grenoble Computer Science
Laboratory [16]. Our test suite consisted of 52 propositional

logic formulas varying in complexity. All 52 were deductively
valid arguments with some requiring only one line to deduce
the necessary conclusion3. We have discovered that many
solvers use either an indirect or conditional proof approach to
solving natural deduction problems. FLAT does not currently
handle conditional proofs (with nested subproofs), so any
problem that requires a conditional proof is unsolvable. None
of the examples in our test suite, however, required the use
of a subproof. FLAT uses several syllogisms and axioms to
search for sub-goals that other systems manually derive which
slows computation time and over-complicate the proof. We
also found that some systems did not allow the use of certain
symbols or input, such as the biconditional operator, uppercase
propositions, or arbitrary letter propositions (requiring us to
alter our test cases for these systems). Figure 2 shows a
comparison of the four systems using the metric described
above. Some test cases generate a line count of 0. This
indicates that the test was unsolvable in that system due to
a symbolic restriction or resource limitation.

Section 4.3 describes related work to translating natural
language sentences to formal logic alongside our proposed
solution.

B. Future Work and Consequences

Several considerations and apparent consequences arose
throughout the development of the research project. The first
prominent concern comes through students abusing this system
on exams and homework assignments. A student can easily
input a given formula to the system that they are supposed to
compute by hand, then claim they performed the computation
without outside assistance. Our posed counterargument is that
these solutions and theorem solvers/provers exist elsewhere,
and because this is a publicly available system, abuse is
possible. Our hope is that its emphasis on aid and tutorial,
rather than being a blatant ”plug and chug” solution will
dissuade those looking for an easy workaround. To reiterate,
the goal is to provide a functional and easy-to-use environment
that teaches.

As described in section 3.1, FLAT has two convenient
export features via PDF and LaTeX source code (.tex). A
problem with the latter is that because it is easily editable,
any means to protect (it) against plagiarism contradict why
we implemented it from the start. Additionally, students can
generate a PDF and plagiarize it as their own. To counter this,
we propose placing a watermark over the graph/diagram or in
the document’s margins. Of course, like other solutions, this
also has its flaws, which is why we stress FLAT’s intended
purpose and why it should be used to aid students but not
serve as a personal homework solver.

As we briefly mentioned, textbooks provide examples and
practice problems for students. Online learning management
purveyors may, in a similar vein, sell software to universities
that professors use for homework and other assessments.
Systems like Pearson’s MyMathLab [17] for mathematics
courses generate random problems for each student so they

3The 52 tests consist of .in and .out files; they are posted here ¡github
ref¿.



6

cannot easily collaborate or search for solutions online. In
formal logic, the issue is that problems sometimes do not
make sense when procedurally generated. In the case of first-
order predicate logic, it is possible to generate problems
that are unsolvable by automatic systems. Furthermore, if an
instructor would rather use and create non-symbolic problems,
a generator is often too much work due to the complex
nature of natural language generation. Textbooks may provide
solution sets to questions, but these are sometimes locked
behind expensive paywalls, are only given to instructors to
circumvent those who use textbook questions as assessments,
or only give brief answers instead of lengthy descriptions of
the derivation to said solution. FLAT’s deterministic generation
algorithm creates provably well-formed formulas for both
kinds of logic, but they may be (automatically) unsolvable. The
upside to these is that the formulas can serve as supplemental
practice for a student to solve by hand.

C. Natural Language to Formal Logic

Translation of prose to formal logic syntax provides students
a general introduction into how words and phrases are sym-
bolized. Singh et al. [18] use a machine learning and neural
network approach to tackle this problem whereas Bansal [19]
uses constraints and rules to match keywords with first-order
predicate logic symbols. Our potential computerized solution
is to use an ad-hoc generator that pattern matches to symbols
and notations which create a problem that makes sense in
some domain. For instance, suppose an instructor wants their
students to practice translating (English) sentences to first-
order predicate logic, but wishes to not spend a lot of time
manually writing custom problems (with a similar desire to not
use published book or online problems). A phrasal template
could be used for an algorithm to insert cue words, creating
an arbitrary number of premises and conclusion. This, of
course, could generate invalid arguments which may or may
not be desired, which can be prevented by only allowing the
generation of valid argument forms e.g., modus ponens, modus
tollens, or any valid logical syllogism. Sound sentences, or
those that ”produce” semantically correct information rely on
relations between words. A set of propositions such as ”All
cows are televisions.”, ”No television is a war.”, ”Therefore no
cow is a war.” convey a deductively valid argument but make
no sense semantically.

Bansal [19] uses a corpus of sensible, manually annotated
natural language examples which were then converted to first
order logic. However, our idea is to procedurally generate arbi-
trary examples that make syntactic and semantic sense. A lex-
icon of determiners and connectives could serve as the phrasal
template, but nouns, adjectives, verbs, and others should not be
predetermined. There has been some previous experimentation
with this idea in Stanford’s CoreNLP framework [20], the
Natural Language Toolkit (NLTK) [21], and other systems that
use semantic parsing such as Boxer [22]. We plan to experi-
ment further with CoreNLP since it incorporates POS (part-of-
speech tagging), named-entity recognition, coreferencing, and
relation extraction. These components, if used together, could
build a rich corpus of arguments, thus providing students the

necessary tool to translate many examples of English sentences
to formal logic syntax. Perikos et al. [23] present a conversion
process similar to our idea, but we plan to extend it to not
require a corpus of terms or propositions to poll from, meaning
the instructor does not have to provide a dictionary themselves.

D. Limitations

We acknowledge the lack of certain features and capabilities
in FLAT. As discussed in section 3.5, the system enforces
a timeout on the maximum number of iterations a proof
or generator may continue without finding a solution (this
also holds true for the number of permitted atoms in a truth
table). Raising these numeric limits in the advanced settings
menu increases the likelihood of FLAT discovering a solution,
but this, in turn, increases program execution time. Further,
because of the algorithms used for natural deduction and first-
order predicate logic, it is possible that a proof or truth tree
is not deducible due to its complexity. Modifications to the
algorithm to improve heuristics and shortcuts are planned
for future development to either remove these iteration-based
limitations altogether or increase them.

When comparing our software to other preexisting options
in section 4.1, we used the number of lines in the natural de-
duction proofs generated, where lower is better. Of course, any
proof that appropriately and validly arrives at the conclusion
is correct. Nonetheless, a simpler solution is generally better
as students may struggle with any natural deduction proof. So,
a generator that constructs simpler solutions is favored over
one that has superfluous and cumbersome derivations. As we
continue to improve the algorithms, we plan to use different
metrics in measuring FLAT’s performance.

We also recognize that our natural language translation
method is naive. To our knowledge, however, this is the first
experimentation with random premises and propositions to
generate an argument, and we hope to improve this devel-
opment in the near future.

Regarding FLAT’s pedagogical value, we plan to add a
feature that allows instructors to load a file with wffs for the
student to practice. Also, improving the interface with different
error messages, hints, and more user options is a desired goal.

Finally, an evaluation of the effectiveness, intuitiveness, and
pedagogical impact of FLAT via an in-person observational
study with students in the near future is in the works.

V. CONCLUSION

We have presented a new educational tool for propositional
and first-order predicate logic. With several algorithms and
customization features, our aim has been to provide beginner-
to-intermediate students and instructors a comfortable and
easy-to-use environment for learning and practicing introduc-
tory formal logic. We have also discussed groundwork for
natural language to formal logic generation and translation as
well as methods of generating random logic formulas.

REFERENCES

[1] D. L. Hatcher, “Why formal logic is essential for critical thinking,”
Informal Logic, vol. 19, 1999.



7

[2] J. P. Near, W. E. Byrd, and D. P. Friedman, “αleantap: A declarative
theorem prover for first-order classical logic,” in Logic Programming,
M. Garcia de la Banda and E. Pontelli, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 238–252.

[3] B. Fennell, E. Lee, and T. Kim. (2020) Truth table creator. Accessed:
2021-07-04. [Online]. Available: https://www.cs.utexas.edu/ learn-
logic/truthtables/

[4] K. R. Koedinger, V. Aleven, N. Heffernan, B. McLaren, and M. Hock-
enberry, “”opening the door to non-programmers: Authoring intelligent
tutor behavior by demonstration.”,” vol. 3220, 2004.

[5] S. Lukins, A. Levicki, and J. Burg, “A tutorial program for
propositional logic with human/computer interactive learning,”
vol. 34, no. 1, p. 381–385, 2002. [Online]. Available:
https://doi.org/10.1145/563517.563490

[6] C. van der Vlist, “A solver and tutoring tool for logical proofs in natural
deduction,” The Netherlands, 2019, bachelor’s Thesis.

[7] D. M. Cerna, R. Kiesel, and A. Dzhiganskaya, “A mobile application
for self-guided study of formal reasoning,” in ThEdu@CADE, 2019.

[8] J. L. Hein, Prolog Experiments in Discrete Mathematics, Logic, and
Computability, 2009.

[9] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). USA: Addison-Wesley Longman
Publishing Co., Inc., 2006.

[10] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic
Bookshelf, 2013.

[11] J. Hladik, “A generator for description logic formulas,” Edinburgh,
Scotland, UK., 2005.

[12] G. Amendola, F. Ricca, and M. Truszczynski, “Generating hard random
boolean formulas and disjunctive logic programs,” in Proceedings of
the 26th International Joint Conference on Artificial Intelligence, ser.
IJCAI’17. AAAI Press, 2017, p. 532–538.

[13] G. Priest, An Introduction to Non-Classical Logic: From If to Is, 2nd ed.,
ser. Cambridge Introductions to Philosophy. Cambridge University
Press, 2008.

[14] Ariel Roffé, “Propositional logic - natural deduction.” [Online].
Available: https://www.taut-logic.com/

[15] Jukka Häkkinen, “Naturaldeduction,” 01 2017. [Online]. Available:
http://naturaldeduction.org/

[16] Grenoble Computer Science Laboratory, “Natural deduction.” [Online].
Available: http://teachinglogic.liglab.fr/DN/

[17] K. Trigsted, K. Bodden, and R. Gallaher, MyMathLab Developmental
Mathematics: Basic Mathematics, Beginning Algebra, Intermediate Al-
gebra – Access Card – PLUS EText Reference, 1st ed. Pearson, 2014.

[18] H. Singh, M. Aggarwal, and B. Krishnamurthy, “Exploring neural
models for parsing natural language into first-order logic,” ArXiv, vol.
abs/2002.06544, 2020.

[19] N. Bansal, “Translating natural language propositions to first order
logic,” Master’s thesis, Indian Institute of Technology Kanpur, Kanpur,
India, 2005.

[20] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in Proceedings of 52nd Annual Meeting of the Association
for Computational Linguistics: System Demonstrations. Baltimore,
Maryland: Association for Computational Linguistics, Jun. 2014, pp.
55–60. [Online]. Available: https://aclanthology.org/P14-5010

[21] E. Loper and S. Bird, “Nltk: The natural language toolkit,” in In Pro-
ceedings of the ACL Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics.
Philadelphia: Association for Computational Linguistics, 2002.

[22] J. Bos, “Open-domain semantic parsing with boxer,” in NODALIDA,
2015.

[23] F. Grivokostopoulou, I. Perikos, and I. Hatzilygeroudis, “Assistant tools
for teaching fol to cf conversion,” in Artificial Intelligence Applications
and Innovations, L. Iliadis, I. Maglogiannis, and H. Papadopoulos, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 306–315.


