
1

An Investigation of Compiler-Induced
Vulnerabilities and Insecure Optimizations

L. Joshua Crotts
Department of Computer Science

University of North Carolina at Greensboro

Abstract—Modern compilers use advanced and abstracted
techniques to optimize code that aim to further improve per-
formance at the other end of the pipeline. Such optimizations,
however, sometimes pose and create obscure threats that may
counteract safety measures enforced by the developers of the
uncompiled code. While the end goal, from the programmers, is
a fast and secure program, an unchecked compiler may violate
security implications through unintended consequences. This pa-
per investigates and summarizes compiler-induced vulnerabilities
(i.e., vulnerabilities automatically imposed by a compiler in the
binary of compiled code), as well as compiler optimizations that
either remove or alter data or code safeguards. We also discuss
previous research experiments performed to analyze compiler
optimization safety, as well as what to explore in the future and
lingering open questions.

Index Terms—Compiler optimization, Compiler-induced vul-
nerability, Compiler security, Code optimization

I. INTRODUCTION

AHO et al. define a compiler as a program that translates
code written in a source language to an equivalent target

language suited for the operating system and platform architec-
ture [1]. This process involves syntactic and semantic checking
of the source code to ensure it solidly follows the standards
of its source language. Traditionally, compilers perform the
translation in five steps: lexical/token analysis, code parsing
(involving syntactic and semantic analysis), intermediate code
representation generation, code optimization, and finally target
code generation. Compilers often employ code optimization
modules to improve performance that may otherwise result in
a slower target program. These optimizations range from dead
code removal to register allocation algorithms that ultimately
reduce to the graph coloring NP-complete problem. Addition-
ally, optimizations of different types which vary in complexity
may appear in one or more stages—it is not exclusive to
the dedicated “code optimization” stage. In this paper, we
will discuss several compiler optimization techniques that
have introduced vulnerabilities in the target language that are
not present in the source language. Moreover, we will also
examine compiler optimizations that outright remove safety
checks either due to standards/specifications of the language,
or faulty-designed flags. Most importantly, however, we will
discuss what we have tried and tested in the research world,
what we want to know, as well as what open questions
currently exist. Before we begin, we will briefly review the
five traditional source code translation steps of a compiler.
While the exact number of stages varies depending on the

chosen literature (e.g., Honka et al. [2] divides the process
into a front-end and back-end) we will use the Aho et al. [1]
definition as follows:

1) Lexical analysis is the first step of a compiler, in which
a lexer translates input source code into tokens.

2) Syntax analysis, also known as parsing, uses the tokens
to build an abstract syntax tree. Parsing also ensures
that the input follows the specification in the language
grammar.

3) Semantic analysis uses the abstract syntax tree from
parsing to check for language-specific issues. For ex-
ample, type checking in a strongly-typed language.

4) Intermediate code generation, or the creation of an
intermediate representation often constructs primitive
instructions, sometimes in the form of three-address
code. In addition, optimization passes are used to reduce
the footprint of the source code and complexity of the
final compiler stage. Furthermore, because intermediate
representation is usually language and architecture inde-
pendent, optimization is likely to occur. Consequently,
this opens the possibility for insecure optimizations
that affect a larger audience due to the independent
instruction set.

5) Code generation, also known as target code generation,
uses the intermediate representation to create target-
dependent code. Sometimes, architecture-dependent op-
timizations occur here.

II. BACKGROUND AND PRIOR WORK

Compiler optimization history dates back to the mid-1950’s,
when computer programmers were concerned that compilers
for high-level languages could not produce optimal assembly
code—an albeit laborious task which was already achiev-
able by programmers themselves. Given the advancement
of modern computing power, minuscule optimizations may
appear unnecessary. This is counteracted, however, by the re-
liance placed on compilers nowadays from software developers
[2]. After all, software engineer working on non-performant
critical code should not need to worry nor care about the
implementation at the compiler level, right? In the ideal
scenario, it is an abstraction that allows developers to focus
on their product and its quality without understanding the
transformation from high-level code to a running application
on potentially dozens of platforms and architectures. The
unsurprising issue, though, is that this reliance comes at the

2

unforeseen cost of potential security issues. The study and
focus of this paper is to analyze previous attempts at compiler
correctness observation/proofs and the idea of secure code
“mistransformation”.

OWASP [3] provides a somewhat incomplete definition
of insecure compiler optimization, noting its potential to
remove dead store operations. While this is a critical issue
in compiler optimization, it severely understates its associated
dangers. D’Silva et al. [4] provide a more formal and broader
definition which encompasses the correctness of a compiler,
reflecting its ability to preserve code behavior from the orig-
inal source to the intended target. This seemingly intrinsic
promise, however, is sometimes violated when it comes to
the security of source code.Their work also defines the notion
of a correctness-security gap: the delta between a compiler’s
ability to produce correct code while at the same time ensuring
it remains sound with respect to security. In other words,
this gap refers to a compiler optimization violating security
promises. Compiler optimizations and whether a compiler
can create sound and trustworthy code is not a new idea to
the research world—programmers and cryptographers alike
have fought with compilers (and thus compiler designers)
for decades. There is an apparent disconnect between what
a developer expects from a compiler, and the optimizations
in place by compiler writers. This juxtaposition brings several
questions to the table, ranging from whether developers ought
to understand and simply mitigate the optimizations from
a compiler, or if the compiler should omit optimizations
from critical components of code. It has been observed that
programmers are fighting with the compiler in the sense
that they create temporary workarounds to avoid compiler
optimizations. Because compiler writers are always trying to
find innovative optimizations, however, programmer solutions
are more often than not futile. Further, these workarounds
are not bulletproof solutions; if a compiler becomes smart
enough in a future version, it may, for example, overwrite
workarounds in legacy software, defeating the purpose of the
solution. Simon et al. [5] and D’Silva et al. [4] mention some
compiler optimization workarounds in the popular OpenSSL1

program, where cryptographers write inline assembly and
create constant-time integer comparison functions. OpenSSL
is a heavily-audited program, so it raises an important question
about the legitimacy and effectiveness of security implemen-
tations in other, less rigorously vetted source code.

Venkatesh et al. [6] evaluated six open-source cryptography
libraries to measure their attempts to cope with compiler
optimizations. Their report discusses that several techniques
are used, with some relying on the platform (i.e., libraries
that interface with a particular operating system), and thus
require developer intervention to be used properly. They note
that this solves a symptom of the greater problem without
actually fixing the root cause, and further investigation and
communication amongst developers and compiler writers is
necessary.

While, of course, it is easy for a developer to turn off all op-
timizations of a compiler, there are two significant issues with

1https://www.openssl.org/

this approach: the first being that the resulting performance
overhead is often too great and beyond what is acceptable to
the developer. The second is that, in certain unsafe languages
e.g., C, some optimizations are not switchable. Several ideas
have been proposed to offset the race and decades-long war
between compiler writers and programmers. Both Venkatesh
et al. [6] and D’Silva et al. [4] propose solutions to use
annotations or keywords which designate to the compiler
that some code should not be optimized. [4] suggests two
keywords where one signifies that data should not be modified
in memory, and the other tells the compiler that code branch
timing is significant and an optimization may compromise its
security. An analogous idea through the volatile keyword
in C. volatile informs the compiler that the state of a
variable marked volatile is subject to arbitrary change.
Unfortunately, the problem with existing solutions such as this
is that developers often misunderstand their usage or use it
incorrectly.

Moreover, Simon et al. [5] mention the side effects of target
code, and how compilers affect these side effects. Not to be
directly confused with side effects of, say, a subroutine or
function, in this context a side effect is an outside property
affected by the target code. For instance, power drain, exe-
cution time, and others are side effects. Common compiler
optimizations such as subexpression elimination, dead-code
removal, constant folding, function inlining, and more all
influence, alter, and amplify side effects. As we will further
discuss in section 3, cryptographers must have unpredictable
code to prevent an adversary from guessing secret passwords
or keys as a result of measuring when and what code is
executed.

Honka et al. [2] performed a study on the GCC, Clang, and
Microsoft Visual C/C++ compilers with particular emphasis
on the flag options available to developers. They note that it
is confusing to understand what each optimization level does
due to the simple naming scheme e.g., -O0, -O1, -O2,
-O3, -Os, -Ofast. Further, even if developers use the
default compiler flags, it enables a surprising number of
optimizations using -O0. Their data likewise mentions that
the -O1 optimization level contains some uncontrollable and
immutable optimizations, thus leading to confusion when the
option is utilized. They discovered this problem via compiling
source code and comparing the results: one used the -O1
flag, while the other manually toggled the flags that -O1 is
supposed to enable.

Returning to the paper by D’Silva et al. [4], they evaluate
this problem from a formal proof perspective, where they
conclude that current compiler correctness proof techniques
are insufficient for validating security properties of compiler
optimizations because the models fail to account for their
implications.

III. DISCUSSION AND EXPERIMENTATION

A. Compiler-Induced Vulnerabilities
In this section, we will discuss how compilers can introduce

or inject vulnerabilities into target code via optimizations,
rather than focusing on how they remove code that is con-
sidered safe.

3

1) Undefined Behavior: Undefined behavior of a language
is when source code deviates from the standards of said
language, and the behavior/actions of the code turn unpre-
dictable. Undefined behavior generally has no set action,
and the output behavior depends on the compiler. One of
the reasons C is considered dangerous is because of its
undefined behavior mechanics, and the consequences of code
that has undefined behavior. For instance, dividing by zero,
signed integer overflow, buffer overflow, and pointer arithmetic
overflow are all examples of actions that, according to the
language, are undefined and the results cannot be accurately
(and guaranteed) predicted [2]. Whereas other languages like
Java throw exceptions and halt program execution, rarely
will C programs terminate without outside influence with the
exception of segmentation faults for egregious memory access
violations. As we previously stated, because the language does
not define what actions to take in these scenarios, compilers
do whatever it best sees fit, meaning a compiler may rewrite
code sections that it proves are either useless or unnecessary.

1 int main(int argc, char *argv[]) {
2 int buf_size = atoi(argv[1]);
3

4 if (buf_size + 5 > 0x7fffffff) {
5 printf("err overflow\n");
6 exit(EXIT_FAILURE);
7 }
8

9 if (buf_size < 0) {
10 printf("buf_size less than 0\n");
11 exit(EXIT_SUCCESS);
12 }
13

14 printf("%d\n", buf_size);
15 return 0;
16 }

Listing 1. Signed integer overflow in C

Listing 1 shows an example of signed integer overflow in
action. The program reads and converts a string to an in-
teger on line 2 from the terminal arguments. Then, just for
experimentation, we add five to this value and compare it to
232 − 1: the largest value for a signed 32-bit integer. Because
signed integer overflow is, as we mentioned, undefined in
the C language standard, the compiler optimizes the first
if statement away in its entirety, meaning this check never
occurs. The second if statement, on the other hand, executes
“correctly” even with signed integer overflow. Listing 2 shows
the assembly output of this small program. Because this check
never occurs, the programmer or user of the program will not
know if they overflow the maximum space for the buffer.

1 main:
2 .LFB41:
3 .cfi_startproc
4 subq $8, %rsp
5 .cfi_def_cfa_offset 16
6 movq 8(%rsi), %rdi
7 movl $10, %edx
8 movl $0, %esi
9 call strtol@PLT

10 testl %eax, %eax
11 js .L4
12 movl %eax, %edx
13 leaq .LC1(%rip), %rsi
14 movl $1, %edi
15 movl $0, %eax

16 call __printf_chk@PLT
17 movl $0, %eax
18 addq $8, %rsp
19 .cfi_remember_state
20 .cfi_def_cfa_offset 8
21 ret

Listing 2. Assembly output of signed integer overflow

2) Cryptographic Branch Prediction Obfuscation Elimina-
tion: A branch in computer programming is a segment of code
where a boolean decision affects how the program continues,
or the path where a program proceeds. Suppose we have
a program that uses secret values, or even a single secret
value/bit. If the source code is not careful, or the compiler
is unaware of the associated potential security risks, then
it may produce target code vulnerable timing side-channel
attack. Cryptographic code relies on unpredictability; if an
adversary can predict with reasonable probability the outcome
of a branch (and thus the secret values), then such a branch is
not cryptographically secure. Simon et al. [5] describe the idea
of constant-time selection, meaning that a branch chosen by
the program is indistinguishable to an adversary and cannot
be reliably predicted. Another way to view this is that the
execution time cannot guarantee or reliably prove that one
branch was taken over another. The issue with compilers,
however, is that they may view a branch or a segment of code
as unnecessary, and optimize it away. This causes problems
when cryptographers want to guarantee all paths in a program
influence side effects in the same way to produce indistinguish-
able and unpredictable results. Their report also describes an
experiment with several versions of the Clang compiler and
different variations of a boolean integer selection statement.
They discovered that, as Clang saw more and more updates
and upgrades, the more that programs in their test suite turned
susceptible to side-channel timing attacks. One speculation
for this is that the compiler writers working on Clang found
new optimizations that are beneficial in the general case, but
in certain security-sensitive instances, it breaks legacy and
preexisting code.

Another optimization that influences compiler side effects
is known as common subexpression elimination. Listing 3 is
a example of code that is compromised by an optimization
which becomes vulnerable to a side-channel attack.

1 int main(int argc, char *argv[]) {
2 int v = atoi(argv[1]); // Convert argv[1] to

integer.
3 int res = 0;
4 if (v == 17) {
5 // 17 * 34 is a common subexpression.
6 v += 17 * 34;
7 v += 17 * 34;
8 v += 17 * 34;
9 } else {

10 res += v * 6;
11 res += v * 7;
12 res += v << 1 & 0xffff;
13 }
14

15 printf("%d\n%d\n", v, res);
16 return 0;
17 }

Listing 3. Side-channel attack vulnerability via common subexpression
elimination

4

A common subexpression is a repeating expression inside
an existing expression. In listing 3, the subexpression 17 *
34 is used three times in a row, meaning it can be optimized
out as 578, and because there are three compound addition
operators, this can be translated into v += 1743. As a
result, this branch that previously took several instructions
now takes significantly less—an identifiable observation in
a side-channel timing attack. There exist other optimizations
that influence the likelihood of side-channel timing attack
possibilities such as peephole optimizations, constant folding,
and others. The broader research question is: how can we, as
security researchers and cryptographers effectively communi-
cate our needs to the compiler?

B. Safeguard-Removal Compiler Optimizations

In this section, we will describe how a compiler may
remove safety precautions from the target code written by the
programmer in the source code. We shall begin our discussion
with a review of the idea behind persistent state violations.
D’Silva et al. [4] define a persistent state violation as the
accessibility of sensitive data in an prohibited location. We
will describe three classes of vulnerabilities that may lead to
persistent state violations.

1) Dead Store Elimination: Dead store elimination, as
defined by CWE-14 [7] and CWE-733 [8], is an optimization
that removes an assignment operation of a variable that is not
read later in the code. A programmer’s intent is to use this
assignment as a security safeguard which removes sensitive
data from memory. The compiler recognizes that the variable
has no use outside after the assignment, so it assumes that the
line is useless. This optimization, in turn, reduces target code
size and the performance footprint if applied continuously in
a large program. Dead store elimination, however, poses a
major issue for programmers attempting to erase secret keys
or passwords still in memory.

1 int foo(int x) {
2 return (x + 5) >> 1 & 0x7fff;
3 }
4

5 int secret_function() {
6 int secret = 0x681f2021;
7 int val = foo(secret);
8 secret = 0;
9 return val;

10 }

Listing 4. Dead Store Elimination

Listing 4, for instance, shows an example of a C function
secret_function that uses a variable secret. This
variable is used in the function call foo to perform some
operation. Finally, it is overwritten on line 8. A compiler
can see that line 8 is, effectively, superfluous and has no
meaning outside of setting that variable to 0. Several previous
research papers and experiments [4] [2] [5] [6] provide similar
examples of dead store elimination as well as the compiled
assembly. In our test, however, we found something rather
interesting. Listing 5 shows a snippet of the functions in listing
4 compiled to assembly with GCC and the -O1 and -S flags.
Without any optimizations (i.e., the -O1 flag), every line of
target code is as it was in the source code, including the dead

store. With the optimization flag enabled, on the other hand,
it not only scrubs line 8, but also every other line in the
function. An assumption about why this happens is, because
foo is not a complex function (having only one arithmetic
and two bitwise operations), the compiler attempts to inline
the function. In the process, though, because secret is a
constant, it evaluates the expression, and thus the function, at
compile-time.

1 foo:
2 .LFB0:
3 .cfi_startproc
4 endbr64
5 leal 5(%rdi), %eax
6 sarl %eax
7 andl $32767, %eax
8 ret
9 .cfi_endproc

10 secret_function:
11 .LFB1:
12 .cfi_startproc
13 endbr64
14 movl $4115, %eax
15 ret
16 .cfi_endproc

Listing 5. Assembly output of dead store elimination

2) Dead Code Elimination: Dead code elimination is very
similar to dead store elimination, and CWE-561 [9] states that
dead code is code that, provably, either does not affect program
results or never executes. The difference between dead code
and dead store elimination is that dead code is not exclusive to
assignment operations, and holds a greater risk as a result. For
example, suppose a C developer wishes to memset an array
of sensitive data to zero after it has outlived its usefulness.
Clearing an array of values to zero, generally, has no effect
on the resulting program if that array/variable is dead from that
point onward. As a proposed solution, the C11 standard in-
troduced the memset_s function: a memset alternative that
securely sets memory. Windows, on the other hand, provides
the SecureZeroMemory function which promises that this
function will never be optimized from memory. Being that the
latter is a Windows-only solution, it omits any developer not
using Windows or Microsoft’s compilers. The former has the
issue that memset_s is abnormally slow, is deemed optional
by the C standards (meaning not all implementations have
the function), and developers are slowly adopting it with little
success [6].

Listing 6 shows an example of dead cod elimination. The
programmer allocates an array of 100 integers and stores a
secret value inside the array. After processing, to make sure
the data is erased and cannot be accessed later in the program,
we make a call to memset on line 12. In listing 7, though, this
function call is removed from the generated assembly because
the compiler proves that the array is never accessed again, so
modifying its data is seemingly superfluous.

1 static const size_t SIZE = 100;
2

3 int main(void) {
4 int secret = 0x681f2021;
5 int *mem = malloc(sizeof(int) * SIZE);
6 mem[67] = secret;
7 for (int i = 0; i < SIZE; i++) {
8 mem[i] = (i * SIZE) & 0xff;

5

9 }
10

11 printf("%d\n", mem[67]);
12 memset(mem, 0, SIZE);
13 free(mem);
14 return 0;
15 }

Listing 6. Dead code elimination of memset function

1 ... ; Note that this ASM code starts at the loop.
2 .L2:
3 movzbl %al, %ecx
4 movl %ecx, (%rdx)
5 addl $100, %eax
6 addq $4, %rdx
7 cmpl $10000, %eax
8 jne .L2
9 movl 268(%rbx), %edx

10 leaq .LC0(%rip), %rsi
11 movl $1, %edi
12 movl $0, %eax
13 call __printf_chk@PLT
14 movq %rbx, %rdi
15 call free@PLT ; No call to memset function!
16 movl $0, %eax
17 popq %rbx
18 .cfi_def_cfa_offset 8
19 ret
20 .cfi_endproc

Listing 7. Assembly output of dead code elimination

3) Function Inlining Problems: Secure functions, or func-
tions that rely on the destruction of its activation record when
it exits are vulnerable to a compiler optimization technique
called function inlining. Sometimes, a function may be so
short or simple that pushing its arguments to the call stack is
unnecessary. Therefore, the compiler omits passing parameters
and setting up the activation record altogether by copying the
function code into its caller. The problem with eliminating
the prologue and epilogue (i.e., activation record setup and
destruction for the callee) is if a function is supposed to
have a guarantee that data/variables/memory accessible in the
function are secure for the lifetime of the callee, then inlining
its body into the caller removes this guarantee, inducing a
persistent state violation [4] [2].

IV. FUTURE WORK AND CONSEQUENCES

Compiler optimization research has unearthed several issues
and open questions, many of which pertain to the relationship
between the compiler and the using programmer. Several
researchers [4] [2] [5] [6] indicate that there needs to be a
stronger tie among compiler writers and software developers
and cryptographers—communication about what is necessary
for writing secure code is extremely pertinent. There is a
severe power struggle and race between the groups, where
software developers/cryptographers find that the existing tools
to write secure code is often insufficient for their needs and
have to take matters into their own hands. These workarounds,
as we have mentioned, often result in undefined behavior and
cause even greater problems. Plus, with compiler designers
consistently discovering new and improved optimizations,
it affects existing code because certain paradigms used in
the “real world” do not always reflect theory and academic
practices. Understanding these real-world consequences can

further improve this communication pipeline. When software
developers have to write workarounds and patches for unin-
tended optimizations by a compiler or dig into the generated
target code, it distracts them from their primary goals. An
interesting point raised by Simon et al. [5] is that there will
always be a battle between compiler writers/software writers
and those adversaries wanting to attack their systems. Though,
this should not be a catalyst for frustrations and updates that
break existing code, introduce bugs, and force the developer
to fight their tool instead of with their tool.

Additionally, most of the examples in this paper and current
research tie back to the dangerous language of C. It is easy to
dissect C and understand its flaws because of its age, relative
size, and lack of complex features such as object-oriented
programming in comparison to modern counterparts. We,
however, question the effectiveness of modern compilers for
modern and higher-level languages or platforms such as Rust
via rustc, Java via OpenJDK, C# via Microsoft’s Visual C#,
and others. It appears that there is not a lot of research in this
area yet due to its infancy compared to the existing work with
C. Plus, modern solutions are designed to be portable, efficient,
and most likely have learned from C’s mistakes with manual
memory management, undefined behavior, etc. Though, there
has been some experimentation with WebAssembly and the
emscripten compiler toolchain. Lehman et al. [10] wrote a
report about the vulnerabilities generated from WebAssembly
when compiling twenty-six open-source programs. Their static
analysis showed that the WebAssembly target code generated
vulnerabilities that had not been present in the native binaries
for decades. While this is not strictly a compiler optimization
in the sense that we have previously described, it demonstrates
that even modern compilers and languages have (and even
introduce) security reliability issues.

V. CONCLUSION

In this paper we investigated compiler optimizations and
their relation to program security. We discussed previous
research experiments which gained a better understanding
of what types of code compilers tend to optimize, and the
different optimizations that a compiler can perform. We also
described cryptographic programming issues in which a com-
piler introduces holds in the target code that violate security
invariants. Additionally, we mentioned the struggle between
software developers and compiler designers/writers and the
need to improve the staggering lack of communication. Several
researchers proposed solutions to combat this communication
problem that allow software developers to tag certain sections
of code that inform compilers of its security significance.
We discussed and posed several questions about the future
of compiler optimization research in not only C code, but
also modern languages such as Rust with modern compilers
like rustc and even WebAssembly’s framework. Compilers are
incredibly complex tools and their abstraction allows software
developers to focus on their code. Though, developers should
not have to fight compiler optimizations that overwrite secure
code or introduce vulnerabilities. It boils down to several
important questions on the reliance of compilers and the

6

disconnect of software developers and compiler writers. We
hope that future research improves the pipeline and allows
for each developer to stay in their respective domain without
having to constantly cross the streams.

ACKNOWLEDGEMENTS

This research paper was written for my graduate Principles
of Computer Security (CSC 681) course at the University of
North Carolina Greensboro in the Fall 2021 semester. All code
examples were self-written, compiled, and tested.

REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). USA: Addison-Wesley Longman
Publishing Co., Inc., 2006.

[2] M. J. Hohnka, J. A. Miller, K. M. Dacumos, T. J. Fritton, J. D. Erd-
ley, and L. N. Long, “Evaluation of compiler-induced vulnerabilities,”
Journal of Aerospace Information Systems, vol. 16, no. 10, pp. 409–426,
2019.

[3] “Insecure compiler optimization.” [Online]. Available: https://owasp.org/
www-community/vulnerabilities/Insecure\ Compiler\ Optimization

[4] V. D’Silva, M. Payer, and D. Song, “The correctness-security gap in
compiler optimization,” in 2015 IEEE Security and Privacy Workshops,
2015, pp. 73–87.

[5] L. Simon, D. Chisnall, and R. Anderson, “What you get is what you
c: Controlling side effects in mainstream c compilers,” in 2018 IEEE
European Symposium on Security and Privacy (EuroS P), 2018, pp.
1–15.

[6] A. P. S. Venkatesh, A. B. Handadi, and M. Mory, “Security implications
of compiler optimizations on cryptography – a review,” 2019.

[7] “Cwe-14: Compiler removal of code to clear buffers,” July 2006.
[Online]. Available: https://cwe.mitre.org/data/definitions/14.html

[8] “Cwe-733: Compiler optimization removal or modification of security-
critical code,” October 2008. [Online]. Available: https://cwe.mitre.org/
data/definitions/733.html

[9] “Cwe-561: Dead code,” July 2006. [Online]. Available: https:
//cwe.mitre.org/data/definitions/561.html

[10] D. Lehmann, J. Kinder, and M. Pradel, Everything Old is New Again:
Binary Security of Webassembly. USA: USENIX Association, 2020.

